Research on distributed single-mode fiber temperature measurement method based on G-S hybrid coding
DOI:
CSTR:
Author:
Affiliation:

1.School of Physics and Optoeletronic Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.School of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 3.Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

Clc Number:

TN247

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To reduce the temperature measurement error of distributed single-mode fiber temperature sensing systems, the paper proposes a temperature measurement method based on Golay-Simplex hybrid coding. First, four G codes are transformed into S codes to achieve 12-channel G-S hybrid coding modulation. Then, the output signals of the 12 channels are processed through S code decoding and G code decoding sequentially, employing cumulative averaging and wavelet transformation for temperature curve denoising. This verifies that the coding gain of the G-S hybrid coding is the product of the coding gains of the G and S codes. Comparative experimental results show that under conditions of 30 km fiber length, 50 ns pulse width, and 64 bit coding length, the amplitude fluctuation range of the anti-Stokes signal curve in the G-S hybrid coding temperature measurement system is smaller and has a higher signal-to-noise ratio across the fiber length compared to the Golay code-based temperature measurement system and the single-pulse temperature measurement system. The steady-state temperature measurement error of the G-S hybrid coding can be optimized from ±7.3℃ in the single-pulse system to ±2.5 ℃, outperforming the measurement error of ±3.9 ℃ in the distributed Raman fiber temperature measurement system based on Golay codes. Additionally, the spatial resolution can be maintained at 5 m, demonstrating the effectiveness of G-S hybrid coding for long-distance single-mode fiber temperature measurement, potentially providing effective technical solutions for the integrated perception of infrastructure conditions such as temperature changes due to leakage in hydraulic dams.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 03,2025
  • Published:
Article QR Code