- 当期目录
- 优先出版
- 最新录用
- 下载排行 过刊浏览
-
2024,38(5):1-9,
Abstract:
环状波纹是隐形眼镜制造过程中水凝胶材料分布不均匀造成的、在镜体边沿向内环形收缩的表面缺陷,因在投影检测中难以发现而造成产品质量不良,环状波纹缺陷检测是隐形眼镜产品制造的技术难题之一。本文根据该缺陷特征,搭建了圆环光源照明成像系统,采集了环状波纹缺陷图像模型数据库,引入了一种基于改进RT-DETR的隐形眼镜环状波纹缺陷轻量级检测算法。首先,将RT-DETR原始ResNet18主干提取网络中的BasicBlock替换为轻量级FasterNetBlock。然后,在RT DETR的Neck部分加入SimAM三通道注意力机制,提高模型的准确度。最后,将GIoU替换为MPDIoU损失函数加快收敛速度,提高检测精度。实验结果表明,相比于原始的RT-DETR算法,改进后的RT-DETR算法在隐形眼镜环状波纹数据库上的mAP@0.5达到了94%,提高了3.1%,Params和FLOPs相比于原始的算法分别降低了15.6%和13%。该算法极大地减小了计算量,有效提高了隐形眼镜环状波纹缺陷的均值平均精度,有望突破隐形眼镜环状波纹缺陷在线检测的技术难题。
-
2024,38(5):10-18,
Abstract:
航天发动机试车台作为检验发动机可靠性的关键装备,其健康状态评估对确保发动机安全运行具有重要意义。试车台气路系统具有故障模式复杂多变,多点位、多模态传感信息关联性强等特点,且存在数据积累有限、采集的健康状态样本分布不均、人工监测运行状态造成人力资源浪费以及高误警率等问题。为此,提出了基于自适应重构相空间-支持高阶张量机的健康评估模型。该方法首先通过设计E1(m)的稳定性判定准则,实现对气路系统相空间的自适应重构;其次采用张量对气路系统的多点位、多模态数据进行表征;然后基于支持高阶张量机挖掘张量样本中的多源传感关联信息与健康模式,实现对试车台气路系统的健康状态评估;最后利用中航某所发动机试车台实际试车数据,与支持向量机、决策树与朴素贝叶斯算法对比,结果表明提出方法在弱数据环境下具有良好评估能力,整体评估精度为89.7%,在极端弱数据环境,精度下降保持在8%以内。
-
2024,38(5):19-28,
Abstract:
相位敏感光时域反射仪(Φ-OTDR)通常利用相干探测的方式实现长距离、分布式、高灵敏度的振动检测。为了准确获取振动信号的位置与相位信息,正交解调算法是当下广泛使用的重要技术,但该算法存在耗时过长的局限。针对此问题,提出了一种基于现场可编程门阵列(FPGA)的瑞利散射信号快速解调方案,采用流水线结构实现传感数据采集以及数据解调的同步,通过数字正交混频技术获取两路正交信号,利用有限冲激响应低通滤波去除高频分量,利用坐标旋转数字算法(CORDIC)向量模式实现振动相位硬件解调,可以较好地提升相干探测Φ-OTDR系统整体的实时性。实验结果表明,在探测距离40 km的条件下,传感系统可成功实现振动信号的定位与相位还原。而探测距离不变,数据采集条数提升至4 000条时,FPGA解调仅耗时1.60 s,与传统的上位机CPU解调方案相比缩短了145.61 s,从而为Φ-OTDR振动传感数据的实时解调提供了参考。
-
2024,38(5):29-37,
Abstract:
行星变速器运行工况多是非平稳运行工况,运行过程中齿轮啮合振动信号相互耦合导致测试信号混叠,其隐藏故障诊断难度增大;同时应用复杂的神经网络模型进行故障诊断预测时多数会收到工业现场边缘计算设备硬件的限制。针对相关问题,在保证行星变速器故障诊断准确率的情况下减少网络模型的参数量,提出了一种应用平滑伪维格纳-威利分布(smooth and pseudo Wigner-Vile distribution,SPWVD)与知识蒸馏结合的智能识别模型用于行星变速器故障诊断。首先,利用集合经验模态分解(EEMD)方法将多分量振动信号分解后选取单分量信号进行SPWVD计算后线性叠加得到二维时频图作为输入,以ResNet101为教师模型指导学生模型MobileNet进行训练,复杂教师模型将数据中的知识传授给学生模型,提高了学生模型的精度。将该方法与同类方法进行了对比,结果表明,模型以牺牲2.43%准确率为代价,存储成本下降为教师模型的24.55%,相较未知识蒸馏的MobileNet的准确率提高了9.61%,实现模型轻量化。本研究方法对提高深度学习模型在工程实际应用,降低边缘计算设备部署成本提供了一种有效且可行的解决方法。
-
2024,38(5):38-46,
Abstract:
现有测试水润滑轴承特性重要表征参数水膜压力的诸多方法中,由于传感器距离真实测点较远或对轴系创伤较大等原因,导致准确的水膜压力实证数据难以获取,制约了轴承进一步研究与发展。针对上述难题,提出将薄膜传感器嵌入到轴承轴瓦中,而压力数据通过无线传感传输的全新监测方法。首先,建立轴瓦开槽轴承的物理模型,通过对沟槽附近轴瓦变形的有限元分析确定开槽位置、结构与数量;建立轴承流体域和固体域物理模型,对水膜压力分布进行仿真分析;然后,提出薄膜传感器标定方法对其准确标定;最后,进行多工况轴承水膜压力测试试验并与仿真结果和现有方法进行对比分析。研究结果表明,通过在轴承轴瓦开槽嵌入薄膜传感器并进行数据无线传输的方法可行,水膜压力实测数据与仿真结果偏差低于10%,比现有方法实测数据更精确。水膜压力沿轴向递减,轴承内部存在部分润滑膜,处于混合润滑状态。
-
2024,38(5):47-55,
Abstract:
超声波检测是一种常见的钢材缺陷检测方法,通过机器学习算法建立分类模型能够实现有效的缺陷识别。神经网络是目前最常采用的一种算法,但存在模型结构复杂且需要大量训练数据的问题。对此,提出一种基于随机森林的超声缺陷识别方法,能够实现对缺陷类型的智能、准确识别,以解决模型结构复杂和训练数据需求大的问题。首先对方体试件中的不同形状、尺寸和深度的缺陷进行超声检测实验,基于实验数据利用随机森林算法建立超声缺陷识别模型;进而对模型的缺陷识别效果进行分析,并与支持向量机、K-近邻分类算法、AdaBoosting算法和卷积神经网络比对分析缺陷识别效果;然后利用验证试件进行缺陷识别验证实验,以进一步验证所建立缺陷识别模型的有效性。结果表明,所提缺陷识别方法相比其他算法具有最高的准确率,验证实验中缺陷分类准确率达到94.6%。
-
2024,38(5):56-63,
Abstract:
针对现有被动式声源定位算法测量精度低、适用范围小等问题,提出了一种基于最优四基阵的被动式声源定位估计方法。该方法通过构建最优四基阵阵列结构以实现多阵元点共用,旨在使用较少的阵元总量实现对目标声源的融合定位估计,从而提高定位精度。并就该阵列模型确定空间目标定位方程组,将求解位置坐标问题转换为求解阵元点之间时延差值问题。进而采用二次分数低阶协方差算法求解脉冲噪声环境下的相应阵元间时延差值,即求得阵元信号的自分数低阶协方差和两阵元间信号的互分数低阶协方差之后,再次计算二者的互分数低阶协方差,以期更大程度上抑制脉冲噪声的影响,提高时延差值估计精度;最终将求得的时延估计信息带回定位方程组已实现对空间声源的定位估计。通过数值仿真和实测实验验证了所提方法的可行性及阵列结构的优越性。在实测实验中对声源定位估计误差仅为0.085 1 m,表明所提方法能较高精度的实现脉冲噪声环境下的声源定位,拓展了被动式声源定位算法的应用场景,具有一定的实际应用价值。
-
2024,38(5):64-74,
Abstract:
针对永磁同步电机运行过程中因模型不确定、参数摄动和外部扰动等因素的影响,从而导致驱动系统性能下降的问题,提出一种新型控制策略。首先,为减少对系统数学模型的依赖,构建了一个新的超局部模型,用于描述永磁同步电机的转速环。其次,基于转速环的新型超局部模型,结合一种新型积分终端滑模面和改进超螺旋控制律来设计新型无模型超螺旋快速积分终端滑模控制器,实现了对转速的精确控制。再次,采用非奇异快速终端滑模面和双幂次趋近律设计改进扩展非奇异终端滑模扰动观测器,通过精确观测和前馈补偿未知扰动,有效地抑制参数摄动和外部扰动,增强了系统鲁棒性,提高系统的动态性能和稳态性能。最后,通过与传统控制方法的仿真和实验对比,证实所提算法转速抗超调能力提升为0.412 5%,转矩快速响应能力提升0.013 s。结果表明当存在未知扰动时,所提方法具有较强的鲁棒性和良好的抗干扰性。
-
2024,38(5):75-89,
Abstract:
目前,大多数基于卷积神经网络的图像去噪模型不能充分利用图像数据的冗余性,这限制了模型的表达能力。而且,为了有效去噪,往往将边缘信息用作先验知识,而纹理信息通常被忽略。针对这些问题,提出一种新的图像去噪网络,该网络首先使用注意力相似性模块提取图像的全局相似性特征,通过平均池化来平滑和抑制注意力相似性模块中的噪声,以进一步提高网络性能;其次使用扩张残差模块来提取图像的局部和全局特征;最后使用全局残差学习增强网络从浅层到深层的去噪效果。此外,还设计一种纹理提取网络从噪声图像中提取局部二值模式以获取纹理信息,利用纹理信息作为先验知识,可在去噪过程中保留演化图像中的细节。实验结果表明,与一些先进的去噪网络相比,新提出的去噪网络在图像视觉上有很大改善、效率更高且峰值信噪比提高了2 dB左右,结构相似性提高了3%左右,更有利于实际应用。
-
2024,38(5):90-97,
Abstract:
在现有的模拟电路故障诊断算法中,人工智能故障诊断算法训练数据量大、训练时间长,且难以实现参数辨识。传统电路分析方法所需测试点多,计算复杂。基于此,提出了一种基于优化矩阵扰动分析的模拟电路故障诊断算法。首先,采用拉普拉斯(Laplace)算子卷积被测电路的输出响应矩阵,从而增强矩阵元素与电路元件参数之间的扰动规律。其次,选取矩阵的迹和谱半径作为故障特征,并利用这种扰动规律建立矩阵模型。然后,利用改进的诊断算法,在Sallen_Key带通滤波器电路和跳蛙低通滤波器电路上进行实例验证。结果表明,所提方法在仅使用一个测点的情况下,可实现故障元件的参数辨识。其故障诊断率达100%,参数辨识误差控制在1%内,且计算时间控制在毫秒级别。因此该方法容易实现在线测试,且适用于要求高定位准确率、高精度参数辨识的场合。
-
2024,38(5):98-111,
Abstract:
为解决传统双输入信号驱动的二维三稳随机共振系统(two-dimensional tri-stable stochastic resonance system driven by dual-input signals, DTDTSR)所存在的输出饱和和信号放大差等问题,独创性地提出了一种全新的系统:双输入信号驱动的耦合分段对称三稳态随机共振系统(coupled piecewise symmetric tri-stable stochastic resonance system driven by dual-input signals, DCPSTSR)。首先深入研究系统输出饱和性的问题,为系统性能的优化提供了关键理论基础。其次,在绝热近似理论的框架下,推导了系统的输出谱放大函数(spectral amplification, SA)。详尽分析了系统参数对其的影响,为更深层次的理解提供了理论支持。进一步,通过数值模拟对DCPSTSR、耦合分段对称三稳态随机共振系统(coupled piecewise symmetric tri-stable stochastic resonance system, CPSTSR)和DTDTSR系统进行了全面比较,结果明确指出DCPSTSR系统在输出谱放大函数方面显著优越于其他系统。最后,通过遗传算法对系统参数进行了精密优化,并将其成功应用于轴承故障检测。实验结果验证了DCPSTSR系统在性能上的卓越表现,为未来理论研究和工程应用提供了有力的理论支持和可行性验证。这一设计以及其在轴承故障检测方面的成功应用,为共振系统领域的进一步研究和实际应用提供了新的方向和范例,具有重要的科学和工程价值。
-
2024,38(5):112-118,
Abstract:
当前行人检测算法是无人驾驶领域的研究热点,但行人遮挡问题由于样本量相对比较少、遮挡情况多样、可视特征减少等因素,仍未得到很好的解决。针对行人之间相互遮挡或行人被其他物体遮挡导致的漏检问题,给出一种帧间方向梯度直方图特征关联的行人检测方法。首先,在YOLOv7基线网络模型的基础上添加跟踪的方法,以发现漏检行人并估计其位置信息;将含有漏检行人的最新局部图像作为新的信息,利用方向梯度直方图特征,采用支持向量机的方法,在漏检目标估计位置处进行行人检测,以改善由于部分遮挡所导致的漏检问题。实验结果与基线网络相比,该方法的精确度(P)值提高了6.25%,被遮挡行人的平均精度(AP)由26.67%提升到了53.42%。实验表明帧间方向梯度直方图特征关联的行人检测方法可以提高行人检测准确率,计算复杂度低,不明显增加原方法的计算开销,具有一定的应用价值。
-
2024,38(5):119-129,
Abstract:
针对退役圆柱动力锂电池自动化拆解过程中存在的成像环境复杂、电池不规则形变和金属表面不均匀漫反射等复杂情形,现有视觉识别方法无法准确提取轮廓与位姿信息问题,提出基于弗雷歇距离相似函数的轮廓精确提取和基于矩形度与边缘形态特征的位姿检测方法。通过建立圆柱锂电池Lambert漫反射模型和运用形态学运算方法得到锂电池粗定位轮廓,并根据弗雷歇距离定义的相似度函数,对粗定位图像内各像素带归类完成轮廓精确提取。随后根据圆柱锂电池正负极端特征,通过自适应阈值分割算法提取正负极端ROI区域特征轮廓,最后对比两端区域矩形度数值计算出锂电池位姿信息。实验结果显示:在自建包含形变、腐蚀锈斑和光照不均情形下的退役圆柱锂电池图像数据集中,所提方法对不同型号和位姿下的锂电池识别均有较高精度,其直径长度检测误差小于3%,位姿检测正确率高于94%,能够满足实际自动化拆解检测需求。
-
2024,38(5):130-138,
Abstract:
无监督行人重识别旨在无监督设置下从非重叠的相机中识别出同一行人。针对现有的无监督行人重识别网络不能充分提取行人特征以及相机之间的差异导致行人检索错误的问题,提出了一种细化特征引导对抗性解纠缠学习的无监督行人重识别方法,设计特征细化信息融合模块嵌入ResNet50网络的不同层,用以增强网络提取关键信息的能力。设计特征解耦学习方法最小化行人特征和相机特征之间的互信息,减少相机差异对网络的负面影响,同时设计对抗性解纠缠损失函数进行无监督联合学习。在两个公共数据集Market-1501和DukeMTMC-reID上对所提方法进行评估,平均精度均值分别提升了4.6%、3.1%,相较于基线算法具备较强的鲁棒性,满足在无监督背景下对行人的识别需求。
-
2024,38(5):139-147,
Abstract:
针对冗余特征对变压器故障识别影响和传统方法识别准确率低的问题,提出一种基于核主成分分析(kernal principal component analysis, KPCA)与混沌麻雀搜索算法(chaos gauss sparrow search algorithm, CGSSA)优化核极限学习机(kernelized extreme learning machine,KELM)的变压器故障识别方法。首先,通过KPCA对变压器故障数据进行预处理,降低特征间相关性。其次,通过引入改进Tent映射和高斯变异策略优化麻雀搜索算法提高其搜索精度和收敛速度,并将CGSSA与麻雀搜索算法(SSA)、灰狼优化算法(GWO)及鲸鱼优化算法(WOA)效果进行对比。最后,利用经KPCA处理后的特征数据作为模型输入,并通过CGSSA准确选择KELM的核函数参数和正则化系数,建立KPCA-CGSSA-KELM变压器故障识别模型。实验结果表明,在相同输入数据的情况下,CGSSA在收敛速度和寻优精度方面均有提升,且所提方法识别准确率为95.7%,较WOA-KELM、GWO-KELM、SSA-KELM分别提高18.6%、10%、15.7%。结果表明所提方法能有效处理冗余特征,提高故障识别准确率,证明了使用所提方法在在冗余特征影响的情况下进行变压器故障识别的有效性与可行性。
-
2024,38(5):148-157,
Abstract:
为了解决标准注意力方法只能生成粗粒度的注意力区域,既无法获取遥感对象之间的地理关系,也不能充分利用遥感图像语义内容的问题,提出了一种面向遥感图像的结构化图像描述网络(geo object relational segmentation for remote sensing image captioning,GRSRC)。首先,针对遥感图像特征高度结构化的特点,提出基于结构化遥感图像语义分割的特征提取方法,通过增强编码器特征提取能力实现更准确的表达;同时,引入注意力机制对分割区域进行加权,使模型能够更加关注重要的语义信息;其次,针对遥感图像空间对象位置关系较为明确的特点,在注意力机制中融合地理空间关系,使生成的描述更加准确且具有空间一致性;最后,在RSICD、UCM、Sydney 3个公开的遥感数据集上进行实验评估,在UCM数据集上,BLEU-1达到了84.06、METEOR达到了44.35、ROUGE_L达到了77.01,相较于所对比的经典模型,分别提升了2.32%,1.15%和1.88%。实验结果说明模型能够更充分利用遥感图像语义内容,表明了该方法在遥感图像描述任务中具有较好的性能。
-
2024,38(5):158-168,
Abstract:
针对大规模无线先进测量仪表在智能配电网应用时,无法实现对不同类型传输数据的延时性能进行分别评估分析的不足,提出了一种保证实时性需求的射频网状网络(WMNs)数据分类传输的延时性能评估方法。在分析智能配电网WMNs架构基础上,借助马尔科夫链调制手段,建立起前后两个连续时隙起始阶段之间函数关系。为避免在求取稳态解过程中解高阶微分方程的困难,给出了一种基于误差迭代求取稳态工作点的求解方法并给出详细求解流程。在稳态工作点求出的基础之上,进一步建立实时性数据和非实时性数据在上行、下行传输过程中平均延时性能评估分析解析式。为了验证所提出的智能配电网WMNs延时性能评估方法有效性,分别对实时性数据和非实时数据在3种不同的传输率环境下延时性能进行仿真测试。实验仿真和测试结果表明,所提出的方法,能够实现对智能配电网不同类型的通信数据的传输延时进行性能评估分析,而且能够提射频网状网络的传输性能。
-
2024,38(5):169-177,
Abstract:
各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的散布熵(DE)值,并通过主成分分析法(PCA)对矩阵进行降维,从而构造特征矩阵。利用蝙蝠优化算法(BA)对支持向量机(SVM)的惩罚系数与核函数参数进行优化,对离心泵的多种故障工况开展诊断,并与多种诊断方法进行比较。实验结果表明,经过BA优化后的模型在诊断准确率上提高了21.7%;在该模型的基础上利用DE对MFCC提取的信号进行深度挖掘,使模型诊断的准确率提高2.05%。
-
2024,38(5):178-187,
Abstract:
飞机多层金属铆接结构随着飞机服役时间的增加,并伴随极端服役环境,有可能出现疲劳裂纹等缺陷,及时发现缺陷并获取缺陷深度、方向等信息对损伤评估与维修具有重要意义。然而,由于多层结构带来的缺陷隐蔽性,导致常规电涡流探头检测信号特征不明显,且常规电涡流探头对某些方向缺陷不敏感,难以判断疲劳裂纹走向。针对上述问题,设计了一种十字跑道型差分式涡流探头,主要由一个十字跑道型激励线圈和两组差分检测线圈组成。通过建立飞机多层金属铆接结构缺陷检测的三维有限元模型研究新型涡流探头的可行性,包括对探头的结构进行了优化,分别对缺陷的不同方向、埋深和提离高度进行了仿真计算。结果表明,新型探头能够有效检测埋深6 mm、尺寸为10 mm×1 mm×1 mm的深层缺陷,并且能够获取缺陷的方向信息。相较传统探头,设计探头具有非敏感方向不漏检、抗提离效应、分辨力高等优势,研究结果可对飞机多层金属铆接结构检测的电涡流探头设计提供一定的参考。
-
2024,38(5):188-200,
Abstract:
山地非标准果园内大型植保机械通行性差,小型轮式植保机器人有广阔的应用前景。为解决因果园枝叶郁闭所造成的视觉信息误判,作业地形复杂所造成的机器人避障不及时等问题,提出了一种基于改进ACO DWA算法的轮式植保机器人路径规划算法。首先通过激光雷达获取果园环境信息,应用体素化网格法精简点云密度,利用栅格法分割地面点云,采用K-means算法提取机器人行间通行区域;再结合植保机器人的运动学模型及作业规范约束,采用基于模型预测算法(SBMPO)生成一系列待选轨迹集合;然后采用改进的ACO-DWA算法,将机器人的通行成本融入搜索节点的目标函数,根据环境地图在线进行路径规划;最后,利用MATLAB R2021仿真平台和机器人ROS操作系统分别进行了仿真验证和实景布置试验。试验结果表明,该方法可以明显改善机器人在果园复杂场景下的通行能力,算法路径规划效果和运行效率明显提高。
-
2024,38(5):201-209,
Abstract:
针对纹理图像表面划痕、裂纹等缺陷不规则、随机分布,导致缺陷检测准确率低的问题,研究一种基于正负样本差异特征双径向融合的自监督缺陷检测方法。首先,采用Otsu阈值分割提取图像前景信息,并以DTD数据集中的纹理图像或数据增强后的正样本叠加Perlin噪声,对正样本图像进行缺陷模拟以合成负样本;然后,利用正负样本经编码器输出的中间特征,计算均方误差进行特征匹配,结合坐标注意力(coordinate attention, CA)和双径向路径聚合网络(path aggregation network, PANet)加强匹配特征的信息融合;最后,将融合特征与编码器输出的低层和高层特征一同输入解码器,优化调整Focal、L1和Dice损失函数权重,实现对缺陷掩码更精准地预测。实验显示,所提模型在MVTec AD数据集纹理类别上的平均图像级、像素级AUROC分别达到了0.995、0.968,相较于其他缺陷检测模型,分类和分割准确率均有提升,表明所提方法在纹理缺陷检测方面的有效性。
-
2024,38(5):210-218,
Abstract:
烃类气体含量的有效监测是油气勘探开采过程中安全保障的重要环节。红外光谱法作为一种安全高效的检测方法,受到现场工程师的关注,但主要采用离线模型进行测量,无法较好应对现场复杂的工况及变化多样的非线性影响因素,导致离线模型不更新而难以维持较高的预测精度。为此,提出了一种融合相似性度量加权核偏最小二乘的即时学习建模策略。首先设计了一种多相似性度量准则融合的样本相似性判别依据,有效筛选历史样本用于在线建模,其次在局部PLS模型中引入非线性核函数,实现非线性特征的有效提取,弥补线性偏最小二乘模型的非线性处理能力。在构建的多组分混合气体红外光谱数据上的实验结果验证了该方法的有效性,拟合优度R2达到0.994 1,RMSE和MRE相比PLS模型分别提升了43.6%和85.8%,可有效用于烃类气体红外光谱定量分析模型的在线更新与高精度预测。
-
2024,38(5):219-228,
Abstract:
质子交换膜燃料电池的反应过程涉及多物理场、多部件、多因素的强耦合作用,其运行不可避免地伴随着长期的性能衰退及局部性能波动。然而,从多重耦合的众多监测参数中有效识别出关键特征并捕捉整体性能的衰退趋势变得异常困难。针对以上问题,提出一种基于XGBoost和Self-Atten-LSTM的PEMFC退化预测模型。首先,利用小波阈值去噪的方法剔除PEMFC原始数据中的噪声干扰;然后,采用XGBoost算法从众多参数中选择出对PEMFC性能影响显著的主要特征,实现关键特征的精确提取;最后,在LSTM中引入自注意力机制(self-attention)解决了其在处理长序列时的全局建模和多维向量间复杂交互关系不足的问题,通过自适应加权,更充分地利用了PEMFC的退化信息。与LSTM、Bi-LSTM、GRU模型相比,所提模型无论在稳态条件还是在动态条件下,都能较准确地预测燃料电池的退化,且模型平均绝对误差减小56.34%~77.04%,预测精度可达99.09%。该方法可广泛应用于制定车辆运行维护策略、提高系统可靠性等方面。
-
2024,38(5):229-237,
Abstract:
非接触式电压测量方法不直接与线路的金属导体部分接触,能适应多种应用场景的电压监测。设计一种利用改进的非接触式电压测量技术对线路电压进行测量并将测量得到的电压波形用于线路故障电压诊断的系统。对传统的非接触式电压测量技术进行拓扑分析并对测量电路拓扑进行改进,能够不受耦合电容影响并准确地测量线路上的电压。由于目前单一的故障特征提取方法具有局限性,为了利用由非接触式电压测量技术测量得到的电压波形实现准确地对线路故障电压进行识别诊断,提出了基于集成学习的故障电压状态识别系统,利用多种特征提取方法提取非接触式电压测量得到的电压波形特征,其识别结果用于对线路故障进行预警和处理。针对该电压监测系统,设计了测量精度和故障识别测试,得到稳态平均误差为0.9%,故障识别准确率最高可达到93%,表明该电压监测系统具有较高的精度和故障识别准确率。
-
2024,38(5):238-248,
Abstract:
针对模拟电路故障类型多、故障状态不稳定以及故障数据冗余,使得模拟电路故障诊断困难的问题,提出利用改进哈里斯鹰算法(improved Harris Hawks optimization,IHHO)优化反向传播(back propagation,BP)神经网络,实现模拟电路故障特征选择与诊断。首先,将非线性自适应因子、柯西变异和随机差分扰动引入哈里斯鹰算法,实现收敛速度和精度的提升;其次,采用IHHO对模拟电路的单一故障和组合故障仿真数据进行特征选择,完成数据预处理;最后,采用IHHO-BP算法,对预处理后的故障数据进行训练和测试,实现模拟电路故障诊断。诊断结果表明,所提方法的诊断精度相较于其他算法提升了5.5%。
2024年第38卷第5期
-
基于PCA特征优选和AdaBoost集成学习的齿轮箱油品状态识别方法
Abstract:
针对传统齿轮箱油液分析方法存在的精度低和泛化能力有限的问题,提出一种基于PCA特征优选和AdaBoost集成学习的齿轮箱油品状态识别方法。首先,通过箱型图和smote插值对油液多参量数据进行清洗以提高油液数据的质量;其次,采用PCA进行油品特征优选,获取有助于识别的油品特征优选子集,在有效融合油液多参量信息的同时,可显著降低模型运行的时间复杂度;然后,利用BP神经网络建立油品状态识别基本模型,引入GWO灰狼优化算法对模型进行优化,构建具有最优初始权值与阈值的弱分类器GWO-BP,同时采取自适应提升Adaboost算法组合多个弱分类器GWO-BP,集成为较强鲁棒性的强分类器。最后利用实验进行验证和分析,实验结果表明,所提方法效果最优,平均识别率99.30±0.16%,平均用时32.77±1.27s,能够快速高效、准确识别出齿轮箱润滑油油品状态,为实现在线齿轮箱的油品状态识别奠定了良好基础,具有重要的工程应用价值。
-
基于DSC-SGRU模型的Wi-Fi手势识别系统研究
Abstract:
Wi-Fi无线感知技术已成为感知领域的研究热点,能够实现对人体活动和周围环境的智能感知。针对现有的无线感知模型参数量较大,在移动设备等算力有限的场景中难以实时感知的问题,提出了一种基于深度可分离卷积(Depthwise Separable Convolution, DSC)的轻量级特征提取模块与堆叠的门控循环单元(Stacked Gate Recurrent Unit, SGRU)混合的分类识别模型。该模型首先利用DSC捕获人体手势的空间特征,并保持特征的时序性不发生变化,然后使用SGRU网络学习手势的时空特征。使用开源数据集Widar对该模型的性能进行了验证。结果表明,提出的DSC-SGRU模型在准确率为77.6%的情况下,参数量仅有236.891K。与现有的手势识别模型相比,DSC-SGRU在性能近似的情况下,极大的降低了模型的参数量。。
-
基于NDE-FLNN与零极点配置法的六维加速度传感器动态性能补偿
Abstract:
六维加速度传感器可广泛应用于类人机器人领域的动态全息检测,从而保障机器人运动柔顺性与稳定性。现有六维加速度传感器存在响应速度慢、响应范围窄等动态特性差的问题,限制了传感器对测量载体实时动态位姿信息的敏锐、宽范围响应。针对这一问题,开展六维加速度传感器时频域动态性能补偿研究。利用差分方程建立传感器的动态模型,提出一种基于NDE-FLNN的高精度动态模型参数辨识算法,并进一步推导动态补偿模型补偿传感器的响应速度,提升传感器的时域动态性能。之后,基于零极点配置法设计传感器各通道动态补偿器,消除原极点并引入新极点,拓展传感器响应范围,改善传感器频域动态性能。实验结果表明,相比于DE-FLNN算法,改进后的NDE-FLNN算法能够更高精度地辨识传感器动态模型参数,传感器补偿后各分量的调节时间减少至原先一半左右,均在150ms以内,工作带宽由22Hz拓展至84Hz,传感器时频域动态性能得到显著提升。
-
基于DBO优化模糊PID的高低温试验箱温度控制方法
Abstract:
高低温试验箱温控系统具有非线性、时滞性。传统采用的PID控制超调量高、调节时间长,而模糊PID控制效果受量化因子与比例因子拟定的影响。为了提高试验箱温控系统响应速度与稳定性,提出了一种基于DBO算法优化模糊PID量化因子与比例因子的高低温试验箱温控方法。首先建立了高低温试验箱加热模型传递函数,在MATLAB/Simulink中搭建传统PID、模糊PID、PSO优化的模糊PID以及DBO优化的模糊PID模型进行仿真,并利用PLC、触摸屏和温控箱搭建实验装置开展实际温控实验。仿真结果表明,DBO优化的模糊PID相较于PSO优化的模糊PID的超调量降低了1.02%,调节时间降低了106s。实验结果表明,DBO优化的模糊PID相较于PSO优化的模糊PID超调量降低了1.1%,调节时间减少了120s,验证了DBO算法优化模糊PID量化因子与比例因子相较于PSO效果更佳。补充测试DBO优化出的最佳量化因子与比例因子在不同温度下的温控效果,表明了DBO算法优化模糊PID控制方案的可行性。
-
基于2D-SPWVD与PCA-SSA-RF的超宽带雷达人体跌落动作辨识方法*
Abstract:
针对现有超宽带雷达人体姿态识别研究领域缺少对相似动作辨识的问题,提出一种时频分析结合随机森林(RF)的动作辨识模型。提出基于平滑伪维格纳-威利分布(SPWVD)的二维平滑伪维格纳-威利分布(2D-SPWVD)时频分析方法,对预处理后的人体动作回波信号进行时频特征提取;利用主成分分析法(PCA)对特征矢量进行降维处理,选择累计贡献率较高的前30个主成分作为新的特征矢量输入到麻雀搜索算法(SSA)优化的RF分类模型中,用于有障碍条件下五种不同人体相似跌落动作辨识。实验结果表明:预处理算法有效地提升了动作回波信号信噪比,PCA-SSA-RF分类模型能有效辨识五种不同人体跌落动作,克服了数据的特殊性以及障碍物的干扰,准确率高达96.6%。在实时数据流中的跌倒检测任务中,模型的分类平均准确率达到了93%,并与RF、PSO-RF等多个不同经典分类模型深入对比,准确率较高且整体所需时间较短,兼具了准确性和分类效率。验证了所提方法的优越性与有效性。
-
Bézier函数协同改进松鼠搜索算法共同优化的光伏电池参数辨识
Abstract:
为解决智能搜索算法对于太阳电池参数辨识的精度低,收敛慢和实验数据获取困难的问题,提出了一种采用二阶Bézier曲线和改进松鼠搜索算法的太阳电池参数辨识方法。首先,在经过最大功率点并且和开路电压点和短路电流点连线平行的直线上寻找最佳Bézier控制点,然后根据控制点位置和电池填充因子之间的拟合规律,实现无需实验即可对伏安特性曲线进行简单精准建模的目的,在准确描述HIT电池的输出特性的同时,有效降低测量噪声对参数辨识的影响;其次,通过引入Sobol序列,反向学习和混沌理论对标准松鼠算法进行改进,在初始化过程中加入类随机采样中的Sobol序列,并采取反向学习策略,增强种群的多样性和搜索空间覆盖率,并融合tent混沌映射对最优解进行扰动,增强算法跳出局部最优的能力。将改进后的松鼠优化算法用于异质结太阳电池参数辨识中,并与其他智能优化算法进行对比,结果显示改进算法的均方根误差分别为0.02825、0.017458、0.02361,具有最高的精度,证明了该算法在异质结太阳电池参数辨识中的有效性和准确性,为太阳电池参数辨识提供了一种可靠且准确的新方法。
-
无线光通信中大气湍流抑制方法
Abstract:
在无线光通信系统中,大气湍流会导致传输光束发生扩展、漂移和光强起伏,使得接收端信号质量严重下降,降低通信系统性能,因此,研究抑制大气湍流的方法是提升无线光通信系统性能的关键。大孔径接收技术、分集技术、部分相干光技术和自适应光学技术能够有效抑制大气湍流效应,是改善无线光通信系统性能的重要手段。详细阐述了各个关键技术抑制大气湍流的原理及其手段,这些关键技术可以通过改变传输或接收策略、调控光场结构、增大接收孔径、补偿波前畸变来改善接收信号的质量,提高通信系统的可靠性,同时分析了不同参数指标对系统性能的影响。讨论了相关抑制技术的国内外研究现状,并展示了相关技术在大气湍流的影响下对系统不同性能指标的改善情况。最后总结了当前无线光通信领域在大气湍流抑制方面所面临的挑战与亟待解决的问题,并对未来技术的发展趋势进行了展望,可为未来在该领域的发展提供参考借鉴。
-
火箭撬试验长直轨道测量控制网的建立及精度分析
Abstract:
火箭撬试验在航空航天、兵器、电子、核武器研制中具有重要的试验价值,为了建立轨道测量控制网、实现火箭撬试验中时空位置参数的测量,本文提出了一种基于边角混合交汇平差模型的组合测量方法。首先,构建了基于全站仪测角信息与激光跟踪仪测距信息的混合交汇平差模型,定义了构建测量误差矩阵的原则,并采用非线性最小二乘法对全局坐标进行了最优估计;其次,采用蒙特卡洛法对测量设备布局和混合交汇平差模型的精度进行了仿真分析,仿真结果表明,测量设备布设在测量范围内的中间位置,可使整体位置标坐标测量误差达到最小,进一步减小平差模型中初始值误差,提高模型解算精度;最后,在某火箭撬试验场地进行了实验验证,在669米的测量范围内,整个轨道测量控制网的位置标距离标准差为0.19mm,验证了长直导轨测量中边角混合平差模型的可行性,该方法对全量程测量任务具有重要参考价值。
-
基于改进YOLOv8的光学遥感小型船舶检测算法
Abstract:
针对海陆边界、近岸岩礁等复杂场景,光学遥感船舶检测成像特征不明显、目标占比小的问题,本文提出了一种改进YOLOv8的小型船舶检测方法。首先,改进模型结构,在颈部层引入浅层特征图的基础上修改预测层,平衡浅层位置信息和深层语义信息的权重,增强模型对小目标的关注度;其次,设计融合FasterNet Block和高效多尺度注意力机制的C2f-FE模块,利用通道分组和跨通道信息交互,加强对微小船舶的特征提取,以降低模型参数;最后,采用动态检测头模块,在不同层级上提高模型对不同空间尺度、任务目标的检测能力。实验结果表明,在MASATI数据集上,改进模型较原YOLOv8s的参数量减少42.3%,检测精度mAP50和mAP50:95值分别提高4.2%和2.2%,有效地实现轻量化、高精度的小型船舶检测。在DOTA-Ship和DOTA-Small Vehicle数据集上,改进模型较原YOLOv8s的检测精度mAP50:95值分别提高1.7%和1.4%。
-
燃气管道巡检四足机器人的改进沙猫群优化SLAM算法研究
Abstract:
为解决燃气管道巡检四足机器人的地图构建问题,提出一种改进沙猫群算法优化的ISCSO-FastSLAM算法。首先,引入柯西变异策略提高沙猫群算法跳出局部最优的能力,加快收敛速度,并加入自适应遗传参数增强沙猫群算法的稳定性。再通过改进沙猫群算法输出的位置预测最优解来更新FastSLAM算法的预测粒子集,从而提高估计精度。同时利用低权重粒子优化策略代替粒子滤波中原来的重采样步骤,来保证粒子的多样性。然后搭建不同的仿真环境,将多种算法进行仿真对比,仿真结果表明:在20m×20m的仿真环境下,ISCSO-FastSLAM算法相比WOA-FastSLAM算法对地图的构建更为准确,对机器人位置和环境路标的估计误差分别减小了17.1%和23.3%。最后,利用四足机器人在60m×100m大小的居民区进行建图实验,实验结果表明:相比FastSLAM算法和WOA-FastSLAM算法,ISCSO-FastSLAM算法能够构建更准确的居民区巡检地图,对阀门井、调压箱等巡检关键位置的估计误差分别减小了16.2%和6.0%。
-
铸造不锈钢机匣R角区域的水浸超声相控阵检测技术
Abstract:
大型燃气涡轮发动机不锈钢机匣结构中包含大量R角区域,该区域因壁厚较大且是曲面结构,制造过程中容易出现微裂纹、气孔、夹杂等缺陷。射线检测因受到R角曲面的形状限制而无法布置射线底片,并且大厚度R角区域也很难被射线穿透,造成射线检测灵敏度下降、缺陷出现漏检。由此,提出大型不锈钢机匣R角区域内部缺陷的超声水浸相控阵检测技术。将相控阵探头布置于机匣内环曲面,通过修正曲面聚焦法则控制阵元发射超声波在R角区域形成聚焦声场;通过建立数值仿真模型分析聚焦法则修正前后的声场聚焦性能,同时分析了水距对聚焦声场的影响;最后,基于修正的聚焦法则和优化的水距开展机匣R焦区区域的超声相控阵检测试验。结果表明:通过曲面聚焦法则修正和水距优化可在R角区域形成聚焦声场,该区域扇形扫描图像质量得到明显改善;能够显示Φ1.5 mm当量尺寸的横孔缺陷并具有良好的检测分辨率,-6dB法下定量相对误差低至6.7 %。
-
含瓦斯煤破裂信号的量子优化降噪模型
Abstract:
为剔除含瓦斯煤破裂信号中的扰动噪声,提出含瓦斯煤破裂信号的量子优化降噪模型?采用改进的量子粒子群算法(IQPSO)优化变分模态分解(VMD)参数,在QPSO算法中引入决策权重系数和动态因子,提高算法粒子决策自适应性和参数搜索能力?利用参数优化的VMD算法分解含瓦斯煤破裂信号,计算各信号分量的有效相关系数来辨识噪声临界点,采用小波变换处理高频噪声并重构剩余分量得到降噪后的含瓦斯煤破裂信号?通过仿真实验和现场测试将降噪模型与EMD?VMD?PSO-VMD?SSA-VMD?GWO-VMD模型对比,信噪比提升20%以上?均方根误差降低至0.03以下,能量占比在90%以上?提出模型自适应性和分解效率较强,能够有效保留信号局部特征,对现场复杂信号具有更好的降噪效果?
-
基于复合骨干网络的漏磁小缺陷信号检测方法
Abstract:
漏磁内检测是管道内检测的核心技术,对保障管道的安全运输至关重要?管道长期处于地下或深海,复杂的环境导致管道表面存在许多小缺陷?由于小缺陷可利用信息有限,传统的深度学习缺陷检测方法识别小缺陷难以获得满意的检测结果?提出了一种基于复合骨干网络的漏磁小缺陷信号检测方法?首先,提出了一种名为背景压缩的数据增强方法,以压缩背景信号进而增强小缺陷关键特征?其次,设计一种自适应的正负样本分配策略,以改善小缺陷在区域候选网络中正负样本分配不均匀的问题?最后,提出了一种小缺陷多分支高分辨率特征提取网络,利用多分支复合结构获得高分辨率特征进行特征融合,以提高网络对小缺陷纹理信息的利用率?以试验场管道数据对所提方法进行验证,实验结果表明,设计的方法是有效的,检测精度达90.3%,与最好结果相比,mAP提升8.4%?
-
基于DAMF-NET的输电线路施工机械智能检测
Abstract:
输电线路的稳定性是电网正常运行的重要保障,为防止线路施工误碰导线发生事故,针对现有检测方法精度低和可靠性差,提出了一种基于多分支双重注意力的特征提取网络DAMF-NET。该算法通过构建多分支双重注意力机制使网络更加关注目标信息的局部特征,优化模型特征提取过程;提出多分支轻量特征融合网络,用于强化模型的全局多尺度语义信息和密集任务下的特征显著性,提高图像特征完备性;提出小目标检测网络以缓解网络尺度方差,提高小目标检测敏感性;使用焦点损失函数和EIoU优化损失函数,减小正负样本不平衡产生的噪声,加快模型训练收敛速度;最后设计了一种基于风险区域定位的状态识别算法,将其部署至施工机械智能检测系统。实验表明,该方法平均精度优于当前大部分检测模型,在施工机械检测和智能巡检方面具有一定的研究意义。
-
基于MICOA的随钻加速度计误差在线补偿
Abstract:
为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法?首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数?其次,在长鼻浣熊算法基础上,根据递推重力加速度确定误差参数的初始搜索边界,同时根据当前误差参数?最优误差参数?边界值三者的相对距离缩小边界;再设计分界点筛选初始误差参数,使算法最初就朝着高质量解的方向搜索,同时保留部分劣解以增加误差参数多样性;接着在算法的全局探索阶段设计参数使其根据加速度计当前误差参数与误差参数平均值之间的误差来调整加速度计误差参数的搜索范围;最后,将重力模值之比设为深度开发阈值,构造高斯变异个体向量使加速度计误差参数跳出局部最优?实验结果表明:经MICOA补偿之后,加速度误差减小,井斜角范围降低了约62.5%,不同钻进角度下,井斜角均方根误差与标准差均能保持在1°以下?
-
测试
Abstract:
传感器作为测试系统的首要环节,其测量不确定度对在测试结果影响最大。为此,分析了传感器主要不确定度来源,讨论了传感器测量不确定度常用的评估方法的优劣。针对当前传感器测量不确定度评估存在问题,提出了采用卷积原理来评定传感器合成不确定度的一种新方法,并运用MATLAB实现了该方法;最后以称重传感器作为实例验证了该方法的有效性。
-
融合PCA与自适应K-Means聚类的水电机组故障检测在线方法
Abstract:
灯泡贯流式水电机组在运行过程中,由于受水力因素、机械、工况等因素影响,很容易导致转轮叶片与转轮室发生故障,严重影响水电机组安全运行。在分析灯泡贯流式水电机组转轮叶片与转轮室故障信号特征的基础上,提出了一种基于K均值(K-Means)和莱特准则(Wright"s criterion)的水电机组故障在线检测方法。该方法利用主元分析(PCA)对水电机组振动和噪声信号特征降维后,融合莱特准则改进传统K均值算法,以实现K值的自适应选择,对特征进行在线聚类,能快速准确识别水轮机变负荷状态与金属扫膛故障。将本文提出的这种方法应用到五凌电力近尾洲水电站灯泡贯流式机组故障检测中,实验结果表明,采用该方法的故障在线检测准确率为100%、变负荷在线检测准确率为96.7%,运行近10个月没有出现故障误报和漏报,表明了该方法的有效性。
-
基于激光信息的移动机器人定位研究
Abstract:
针对移动机器人在导航定位过程中,使用传统蒙特卡罗定位算法会产生粒子收敛较慢和定位精度不高,以及发生人为绑架情况后重定位效率较低的问题,本文给出了一种改进的粒子滤波定位方法来提高移动机器人的导航定位效率。首先,在蒙特卡罗定位算法的基础上进行改进,融入自适应区域划分的方法,保证所划区域包含更多有效信息,减少粒子的收敛时间,完成机器人初步粗定位。然后,在粒子采样和重采样阶段,使用正态分布概率模型进行粒子权重更新,实现更加快速高效地全局精定位。通过实验对比分析,所给方法与基于蒙特卡罗定位算法相比较,耗时缩短了4s左右,且本文的自适应蒙特卡罗定位方法,能够将定位误差保持在6cm左右,从而验证了所给方法的有效性和稳定性。
-
高斯过程改进的鲁棒容积卡尔曼滤波及其组合导航应用
Abstract:
基于GNSS/INS的导航状态估计受状态可观测度影响较大,为提高陆地载体航向角的估计精度,提出了一种改进鲁棒容积卡尔曼滤波方法?首先采用免重采样采样点更新框架实现容积点更新与高斯矩信息的解耦,提高采样点实例化信息在迭代滤波中的传播效率?其次基于状态可观测度分析,将高斯过程引入到系统模型矩估计积分不确定性的标定中,改善移动载体直线行驶条件下航向的估计精度?仿真实验表明,所提GP-RCKF算法能在状态可观测度较弱时显著改善航向角估计精度,航向角误差较RCKF改善28.9%?
-
基于YOLOv5算法的交通标志识别技术研究
Abstract:
针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种改进YOLOv5算法的交通标志识别方法。首先改进YOLOv5算法的损失函数,使用EIOU损失函数代替YOLOv5算法所使用的GIOU损失函数来优化训练模型,提高算法的精度,实现对目标更快速的识别;然后使用加权Cluster NMS改进YOLOv5本身所使用的加权NMS算法,提高生成检测框的准确率。实验结果表明,改进后的YOLOv5算法在由长沙理工大学制作的CCTSDB交通标志数据集上训练的模型的mAP值达到了84.35%,比原始的YOLOv5算法提高了6.23%。所以改进YOLOv5算法在交通标志识别中有更高的精度,能够更好的应用到实践当中。
-
2017,31(1):45-50, DOI: 10.13382/j.jemi.2017.01.007
Abstract:
火电厂排放气体中的氮氧化物(NO2、NO、N2O等)浓度一直是环保检测的重要指标。针对基于光谱分析的氮氧化物浓度检测精度受到多种因素制约和干扰(如温度、粉尘、水分、电器噪音、光学镜片老化、多组分气体吸收峰值交叉干扰等),很难采用单一方法进行改进的问题。首先设计硬件预处理装置用于气体组分的过滤和提纯,然后利用构建的径向基函数(RBF)网络对传感器测试值进行校正。RBF神经网络的自学习自训练能力省去了传统的对干扰因素进行补偿的研究建模,使得检测中数据处理工作效率更高。随机抽取国内某大型火电厂2015年实际数据进行仿真实验以及预测、分析,综合平均相对误差为0841%,表明方法的有效性。
-
2017,31(1):1-8, DOI: 10.13382/j.jemi.2017.01.001
Abstract:
球铰链具有结构紧凑、运动灵活和承载能力强等优点,是一种应用较普遍的多自由度机械关节,其回转角度的检测对系统运动误差预测分析、反馈和控制具有十分重要的意义。首先介绍球铰链的应用与结构特点,然后分析球铰链多维回转角度的测量需求,对国内外球铰链多维角度检测的相关研究发展进行综述,主要包括基于结构解耦测量、基于光学原理测量和基于磁场理论测量等方法。最后,对球铰链多维回转角度测量的研究现状进行总结,指出了其研究的重点、难点以及关键技术突破面临的挑战。
-
2017,31(1):9-14, DOI: 10.13382/j.jemi.2017.01.002
Abstract:
带钢表面缺陷形式的复杂多变给特征的选择带来了困难,为此,提出一种融合特征筛选和样本权值更新的R AdaBoost特征选择算法。该算法在AdaBoost算法的每个循环中通过Relief算法进行特征的筛选与降维,通过筛选后的特征利用样本的类内类间差去除噪声样本,然后根据AdaBoost的动态权值更新样本库,再利用每个循环优化选择得到的最优特征与弱分类器级联成最终的AdaBoost强分类器,进行带钢表面缺陷的检测与定位。实验结果表明,针对带钢实际生产线上的划痕、褶皱、山脉、污点等多种缺陷,该算法可以有效提取出具有高区分性和独立性的特征,同时提高了缺陷检测算法的准确率。
-
2017,31(1):15-20, DOI: 10.13382/j.jemi.2017.01.003
Abstract:
针对微机电系统(MEMS)陀螺仪随机误差成为制约其精度和应用范围的主要因素,提出基于回归滑动平均(ARMA)模型的卡尔曼滤波估计方法。首先基于Allan方差分析结果,确定出量化噪声、角度随机游走、零偏不稳定性是MEMS陀螺随机噪声主要组成部分;然后采用时间序列分析法对MEMS陀螺仪随机噪声的平稳性进行检验;最后基于随机漂移ARMA模型建立离散卡尔曼滤波方程对其开展误差估计与补偿。开展车载静、动态环境下的数字降噪与卡尔曼滤波估计补偿对比实验,结果表明基于ARMA模型的卡尔曼滤波估计法在MEMS陀螺随机误差补偿效果上具有更明显优势。
-
2021,35(12):116-125, DOI:
Abstract:
针对滚动轴承振动信号的非线性动态特性及可靠度评估精度不高的问题,提出了基于改进的交叉模糊熵( improved cross fuzzy entropy,ICFE)和威布尔比例故障率模型(Weibull proportional hazards model,WPHM)的滚动轴承健康状态评估方法。 该方法首先对原始振动信号进行改进的微分局部均值分解(Crt-differential local meandecomposition,Crt-DLMD),选取包含故障 信息最多的有效分量进行重构;然后,利用滑动均值取代原有粗粒化过程,计算重构信号的 ICFE;最后,将 ICFE 作为 WPHM 的 协变量进行健康状态评估。 通过美国国家航空航天局(NASA)和西安交通大学-长兴昇阳科技有限公司的滚动轴承全寿命周期 数据实验表明,所提方法可以准确、有效地评估滚动轴承的健康状态。
-
2017,31(1):21-28, DOI: 10.13382/j.jemi.2017.01.004
Abstract:
经验模态分解(empirical mode decomposition,EMD)降低噪声的同时也削弱信号能量,并会产生虚假信号,导致信号检测存在缺陷,针对这一问题,提出Levy噪声环境下经验模态分解随机共振检测方法。通过将含噪信号进行EMD分解,对分解后信号进行叠加取平均二次采样等处理方法,使其满足随机共振要求,利用自适应算法优化系统参数,进而使处理后信号能够在双稳系统中产生随机共振,达到精确检测的目的。理论分析及实验证明在Levy噪声下,此方法能实现同一特征指数下单频信号与多频信号检测,实验表明在单频信号信噪比为-28 dB情况下能有14 dB的提高,特征指数为1.8下多频信号5 Hz频谱幅值从311.8增加到724,10 Hz频谱幅值由138.9增加到143.2。此方法对在复杂噪声环境中降低剩余噪声能量同时,提高信号能量,减少虚假信号,相对于仅仅进行EMD分解无法判断信号成分,能更好的达到检测效果。
-
2017,31(1):36-44, DOI: 10.13382/j.jemi.2017.01.006
Abstract:
针对基于KAZE特征检测的图像拼接算法实时性问题,提出一种简单有效的AKAZE拼接算法。该算法首先通过AKAZE算法提取图像特征点,接着计算M LDB描述符从而生成特征向量。随后计算特征向量之间的汉明距离,提取出匹配的特征点对,然后利用RANSC算法估算全局单应性矩阵,根据动态线性变换算法求取重叠区域局部投影关系,结合两者统一投影平面,最后利用加权融合实现两幅图像的拼接。对KAZE、SIFT、SURF、ORB、BRISK进行性能实验比较,所用算法不仅对于高斯模糊、角度旋转、尺度变换和亮度变化等情况下保持良好的性能,而且处理时间大大缩短,实现了有效的图像拼接。
-
2017,31(1):29-35, DOI: 10.13382/j.jemi.2017.01.005
Abstract:
为帮助老年公寓监护人员及时发现老年人摔倒等动作,提出了一种基于视频监控的动作识别方法。对监控视频,首先通过基于HSV空间的混合高斯背景建模方法提取前景图像,然后利用所提出的运动特征和形态特征相结合的方式进行特征提取,最后通过具有高斯输出的HMM模型实现动作类型的识别。提出的方法能够适应光照变化影响,对不同动作的动作方向和动作幅度变化具有很好的鲁棒性,实验中动作的识别准确率达到90%。结果表明,本方法能够满足老年公寓动作识别的基本要求,具有一定的实用价值。
-
2017,31(1):76-82, DOI: 10.13382/j.jemi.2017.01.011
Abstract:
在抢险救灾等应急情况下,传感器网络的节点能量更为有限。为减少无用转发的能量消耗,利用无线信道的广播特性,根据广播子树删除思想,提出一种基于最短路由树、具有最少转发节点的组播路由树生成算法。对该算法进了证明和详细分析,并针对实际需要,给出使用范围更广泛的分布式实现方法。仿真分析说明,算法的分布式实现方法可减少ODMRP的转发节点数,大大降低数据发送次数,接收成员节点较多时尤为明显。最少转发节点的组播路由树的网络总开销最小,是延长网络生存时间的有效方法。
-
2017,31(1):144-149, DOI: 10.13382/j.jemi.2017.01.021
Abstract:
为解决目前水表检定存在效率低、人为因素影响大等诸多问题,提出了应用机器视觉技术的水表检定系统,并重点研究实现梅花针快速定位的模板匹配算法和消除湿式水表表盘气泡的图像形态学算法。使用Harris算法预先提取梅花针模板角点,并实时提取现场图像的角点。采用部分Hausdorff距离法,实现梅花针的快速定位;利用图像形态学算法实时消除气泡影响,并完成对梅花针转动齿数的计数。实验表明,该系统在保证检定准确性的同时,可缩短检定时间,提高水表检定效率,解决了湿式水表表盘气泡对检定的不良影响,适用于各类水表的检定。
-
2017,31(1):51-57, DOI: 10.13382/j.jemi.2017.01.008
Abstract:
提出一种快速、简便、高效的眼底血管分割方法。分析眼底图像的灰度值分布和对比度变化,利用匹配滤波克服背景干扰,消除噪声影响,达到灰度均衡,实现眼底图像的亮度归一化。估计眼底图像中背景像素所占比例,利用直方图自动选择阈值,完成对眼底图像中血管的有效分割。在公开的眼底图像数据库上进行测试,该方法对眼底血管分割具有较好的性能指标。实验表明,提出的基于匹配滤波和阈值优化的眼底血管分割方法,准确率高、复杂度低,对眼科疾病的计算机辅助诊断有一定的实用价值。
-
2017,31(1):106-111, DOI: 10.13382/j.jemi.2017.01.015
Abstract:
速度平滑问题是高速数控加工及煤矿提升机为提高加工精度与设备寿命而提出的,针对该速度平滑问题建立分段模型,基于加速度与速度的关系,推导了各段速度、行程和时间的解析解,推导了模型中关键一元三次方程的通用解,并将其运用到速度平滑分段求解问题中。本方法应用于煤矿提升机速度平滑问题中,显示出易于程序实现、计算量小、过渡曲线平滑的特点,能很好适应高速运动设备速度平滑的场景。目前该方法已推广至多个实际项目中。
-
2017,31(1):83-91, DOI: 10.13382/j.jemi.2017.01.012
Abstract:
根据有向传感器节点感知特性,提出一种有向传感器节点模糊感知模型,以此为基础建立了模糊数据融合规则,减少网络中的不确定区域;就有向传感器网络强栅栏覆盖问题,提出一种基于粒子群的有向传感器网络强栅栏覆盖增强算法,将n维求解问题转化为一维求解,提高了算法收敛速度。仿真结果表明,对感知方向可连续调节的有向传感器网络节点,在随机部署情况下与现有算法对比,本算法对目标区域能有效的形成强栅栏覆盖,且具有较快的收敛速度,延长网络生存期。
-
2023,37(1):177-190, DOI: 10.13382/j.issn.1000-7105.2023.01.020
Abstract:
针对经典双稳随机共振(CBSR)系统在微弱信号放大检测方面的困难,提出了 Levy 噪声下的欠阻尼指数型三稳随机共 振(UETSR)系统。 将双稳态和指数势函数相结合,利用非高斯噪声可有效提升信噪比的特性,构造出 UETSR 系统。 首先推导 该系统的稳态概率密度函数,以平均信噪比增益为衡量指标,采用量子粒子群算法进行参数寻优,研究在 Levy 噪声的不同参数 α 与 β 下,系统各参数对 UETSR 输出变化规律的影响。 最后将 UETSR、CBSR 和经典三稳系统(CTSR)应用于轴承故障诊断中, 系统输出后的内外圈故障频率处的幅值较输入信号分别增长了 197. 58,1. 153,18. 81 和 238. 87,26. 63,39. 72,最高峰与次高峰 的谱级比分别为 5. 44,4. 03,3. 85 和 5. 10,3. 79,5. 05。 实验结果表明,不同系统参数均可诱导产生 SR 现象,且 UETSR 系统的 性能明显优于 CBSR 和 CTSR,具有良好的工程应用价值。
-
2017,31(1):99-105, DOI: DOI: 10.13382/j.jemi.2017.01.014
Abstract:
随钻方位电磁波电阻率测井仪器实现地层方位电阻率测量和地层层界面检测的关键在于测井仪线圈系结构的设计,且测井仪器的检测性能主要受电磁波信号发射频率、线圈源距、线圈间距、线圈倾角以及所测地层电阻率的影响。针对随钻方位电磁波电阻率测井仪器的不同检测要求,确定测井仪器的检测方式。根据线圈系结构在不同检测方式的条件下所满足的约束条件,采用仿真实验的手段设计随钻方位电磁波电阻率测井仪的线圈系结构,为实际工程应用中线圈系的结构设计提供参考依据。
-
2017,31(1):139-143, DOI: 10.13382/j.jemi.2017.01.020
Abstract:
为了提高多目标跟踪的鲁棒性,增强目标之间的区别性,使用了一种基于能量最小化(energy minimization,EM)的多目标跟踪算法,不同于现有算法,本算法专注于将多目标跟踪中的复杂问题表示为能量函数的模型,模型中包括了更优的目标区分策略(相似度模型)。通过将每个能量函数成本值对应一个多目标的跟踪轨迹方案,算法将多目标跟踪问题转化为能量最小化的问题。在能量函数模型的优化方法上,算法采用共轭梯度算法和一系列的跳转运动来找到能量最小的值。公开数据集的实验结果证明了本算法的有效性,而且定量分析结果证明了本算法提高了目标与背景、目标之间的相互区别性从而与其他算法相比能获得更好的鲁棒性能。
-
2017,31(1):118-124, DOI: 10.13382/j.jemi.2017.01.017
Abstract:
针对变压器故障诊断准确率低的问题提出了粒子群 自组织映射 学习矢量化(PSO SOM LVQ)混合神经网络算法。为了获取更加有效的SOM神经网络拓扑结构,首先采用PSO算法对SOM神经网络的权值向量加以改进,在此基础上融入LVQ神经网络,弥补了无监督学习SOM神经网络的不足。这种PSO、SOM和LVQ相结合的混合神经网络算法提高了变压器故障诊断的精度,减少了故障诊断的误差。通过仿真,对SOM、PSO SOM和PSO SOM LVQ这3种算法进行了对比。对比结果表明,PSO SOM LVQ混合神经网络算法准确度最高,其故障诊断准确率为100%。由此可见,采用PSO SOM LVQ混合神经网络算法可有效提高变压器故障诊断的性能。
-
2017,31(1):132-138, DOI: 10.13382/j.jemi.2017.01.019
Abstract:
提供了一种适宜于多通道集成的低功耗、小面积14位125 MSPS流水线模数转换器(ADC)。该ADC基于开关电容流水线ADC结构,采用无前端采样保持放大器、4.5位第一级子级电路、电容逐级缩减和电流模串行输出技术设计并实现。各级流水线子级电路中所用运算放大器使用改进的“米勒”补偿技术,在不增加电流的条件下实现了更大带宽,进一步降低了静态功耗;采用1.75 Gbps串行数据发送器,数据输出接口减少到2个。该ADC电路采用0.18 μm 1P5M 1.8 V CMOS工艺实现,测试结果表明,该ADC电路在全速采样条件下对于10.1 MHz的输入信号得到的SNR为72.5 dBFS, SFDR为83.1 dB,功耗为241 mW,面积为1.3 mm×4 mm。
-
2017,31(1):125-131, DOI: 10.13382/j.jemi.2017.01.018
Abstract:
频谱模型的乐音仿真是运用声学理论,由一系列基本函数及其时变幅度乘积的迭加来实现乐器的发声。通过对钢琴琴弦振动和衰减特性的分析以及共鸣箱共振作用的探讨,提出了一种新的数字化钢琴乐音仿真技术,仿真模型由激励系统和共振系统两部分组成。系统以琴弦振动方程为基础,先进行时域上的包络修饰,以模拟琴弦振动的自然衰减,这样可以使乐音各音符间衔接和谐;然后在频域上以频谱包络建模滤波器组,实现共振系统的仿真,对音色进行修饰。该方法能更为有效的雕刻声音,同时较好的表现音色,从而使乐音听起来更加和谐。
-
2017,31(1):150-154, DOI: 10.13382/j.jemi.2017.01.022
Abstract:
东巴象形文是由云南丽江纳西族先民创造并使用的,被誉为“世界上唯一活着的象形文字”。在图形识别、内容释读以及形、音、义信息等方面,现有的英文、汉字等识别系统及翻译系统往往不能适用于东巴象形文字,提出一种先拓扑特征处理后投影法特征提取的分步骤信息处理方法,并采用模板匹配法进行文字识别。通过实验验证表明,基于象形文固有特征的提取,利用拓扑特征与投影法相结合的特征提取方法进行东巴象形文字识别,具有准确度更高的特点,是东巴象形文识别的一种有效方法。