Abstract:The utilization of electromagnetic ultrasonic sensor arrays for pipe defect detection not only improves the signal-to-noise ratio, sensitivity and resolution of electromagnetic ultrasonic detection signals, but also enhances the intuitiveness and flexibility of electromagnetic ultrasonic detection. In this paper, the working principle of the Lorentz force-based periodic permanent magnet arraytype electromagnetic ultrasound transducer (PPM-EMAT) for excitation of ultrasound guided waves was referred and the mechanism of defect localization and imaging was used by the TFM and the SCF. Then the FE model was built to verify the process of quasi-T (0,1) mode guided wave propagation in a pipeline structure. Finally, the developed multi-channel electromagnetic ultrasonic inspection system was used to perform actual inspection of stainless-steel pipelines with defects and verify the simulation results. The experimental results show that the developed system can detect multiple through-hole defects in the pipeline specimen, and the longitudinal positioning error can be controlled below 1. 5%, which verifies that the array electromagnetic ultrasonic sensor pipeline inspection method can realize the defect imaging and defect positioning of the pipeline