Fault parameter joint estimation based on multiple fading factors strong tracking nonlinear filter
DOI:
Author:
Affiliation:

Clc Number:

TN925;TN830

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To improve the estimating precision and robustness of fault parameters, fault parameter joint estimation algorithm based on multiple fading factors strong tracking seventhdegree cubature Kalman filter (MST7thCKF) is proposed. The algorithmextends the fault parameter to state vector, and realizes joint filtering of state and fault parameters. Then, the algorithm introduces multiple fading factors strong tracking filter (MSTF) into the frame of seventhdegree cubature Kalman filter (7thCKF) to improve the robustness of 7thCKF when the fault parameters changing function is unknown or abruptly changed, and enhances estimating precision of fault parameters. Simulation results show that the proposed algorithm has better estimating precision than MSTF squarerootcubature Kalman filter (MSTSCKF) and 7thCKF.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 04,2024
  • Published: