Electric larceny detectionusing FCM clustering and improved SVR model
CSTR:
Author:
Affiliation:

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

Clc Number:

TM73;TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming atthe variety of electric larceny means,the efficiency of electric larceny detection remains improvement.Firstly, the fuzzy C mean clustering algorithm is used to construct different load characteristic curves of the user, and the suspiciouselectric larceny user is preliminarily determined by comparing the curves to be detected with the corresponding characteristic curve.Secondly,the particle swarm optimization support vector machine regression model is adopted to detect the behavior of suspected power stealing users.The experiments show that this method can reduce the range of electricity larcenydetection and overcome the influence of less electricity larcenysamples, improve the efficiency ofelectricity larcenydetection, and increasethe mean square error and average absolute error by 00051 and 0.034 respectively.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 24,2018
  • Published:
Article QR Code