Robot path planning based on region search particle swarm optimization
DOI:
Author:
Affiliation:

Clc Number:

TP242. 6

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problems of particle swarm optimization in mobile robot path planning, such as precocity and local optimum, a path planning method based on region search-adaptive particle swarm optimization algorithm (RS-APSO) is proposed. Firstly, the region search algorithm is used to preprocess the original map to reduce invalid information in the map. Secondly, two variable operators are proposed to adjust the inertia weight factor and improve the acceleration factor adaptively to enhance the search ability of the algorithm in different periods. The new acceleration factor is used to remove the bad region quickly from the particle. Finally, the robot can safely avoid moving obstacles through dynamic obstacle avoidance strategy. Simulation results show that compared with PSO algorithm, the average running time of RS-APSO algorithm is reduced by 30. 3%, the average number of iterations is reduced by 43. 9%, and can also generate safe path in dynamic environment.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 29,2023
  • Published: