Research on a novel method of continuous FBG interrogation based on double AWGs
DOI:
Author:
Affiliation:

Clc Number:

TN247;TN256

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To achieve continuous interrogation of fiber Bragg grating (FBG) based on arrayed waveguide grating (AWG), a method of joint interrogation using two AWGs is proposed. The insertion of the spectrum of the corresponding channel of another AWG in the middle of the spectra of two adjacent channels of one AWG, forming the minimum spectral period. Each measurement selected the two channels with the strongest light intensity from the three channels, and used the relative light intensity interrogation algorithm to accurately measure the FBG center wavelength based on its wavelength-power relationship. The experimental platform was built by using two 100 GHz AWGs, and the interrogation of the temperature sensors was investigated. The experimental results show that the continuous and accurate interrogation of FBG is achieved within the 0. 8 nm minimum dynamic range period of the system, and the interrogation linearity of the system reaches 0. 999 1 and the wavelength accuracy reaches ±4 pm. The C-band range can be divided into multiple wavelength cycles by mathematically analyzing the data and experimental results, and the system can achieve continuous interrogation of a single FBG in the C-band 40 nm full-cycle range. The method not only realizes continuous interrogation of FBG based on AWG in the C-band range, which makes it possible to continuously sense the external physical quantity changes using FBG and improves the practicality of the system. Moreover, the method can accurately interrogate the wavelength information, which provides reference information for the realization of continuous and accurate interrogation of FBG and is conducive to the further expansion of the application field of FBG.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 29,2023
  • Published: