MEMS gyroscope denoising algorithm based on CEEMDAN-WP-SG
DOI:
Author:
Affiliation:

Clc Number:

V241. 5

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A new denoising algorithm is proposed aiming to decrease the random error of MEMS gyroscope. Firstly, the original data is decomposed into multiple intrinsic mode functions ( IMFs) using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Then the IMFs are divided into noise IMF, mixed IMF, and signal IMF according to multi-scale permutation entropy with Mahalanobis distance. Next, the noise IMF is denoised by wavelet packet (WP) and the mixed IMF is denoised by Savitzky-Golay filter (SG). Finally, the denoised signal is obtained via reconstructing the processed IMF and the signal IMF. The bumps signal is increased from 6 dB to 17 dB, and the mean square error is reduced by 71. 9% after denoising through the proposed method. The angular random walk of the denoised signal is reduced by 31. 5% in the experimental analysis of the measured gyroscope static data, which illustrates that the proposed method can predominantly improve the accuracy of MEMS gyroscope accuracy.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 06,2023
  • Published: