Abstract:In view of the nonlinear dynamic characteristics of rolling bearing vibration signal and the low accuracy of reliability evaluation, a rolling bearing health condition assessment method based on improved cross fuzzy entropy (ICFE) and Weibull proportional hazards model (WPHM) was proposed. Firstly, the original vibration signal is decomposed by improved DLMD (Crt- DLMD), and the effective component with the most fault information is selected for reconstruction. Then, the ICFE of the reconstructed signal is calculated by using the sliding mean instead of the original coarse-grained process. Finally, the ICFE is used as the covariate of WPHM for health status assessment. The life cycle data and experiments of rolling bearing from national aeronautics and space administration (NASA) and Xi′an Jiaotong University Changxing Shengyang technology (XJTU-SY) show that the proposed method can accurately and effectively evaluate the health status of rolling bearings.