Research on diagnosis method of tower grounding grid breakpoints based on deep learning
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TM754;TP391. 5

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process of using electromagnetic induction method to diagnose the breakpoint of the grounding grid of the tower, aiming at the error caused by manual diagnosis, this paper proposes a diagnosis model based on one dimensional-convolutional neural network (1D-CNN), the diagnosis model takes the one-dimensional magnetic field data directly above the grounding grid as input, and outputs the number and location of breakpoint faults through a deep neural network. This paper firstly verified the effectiveness of electromagnetic induction method in the diagnosis of tower grounding grid breakpoints through experiment, then a magnetic field breakpoint fault dataset was established and a 1D-CNN diagnosis model was trained. In the diagnostic accuracy verification experiment, the diagnostic model reached 97. 50% diagnostic accuracy on 40 faulty magnetic field samples, showing good generalization. The comparison experiment of the diagnosis effect shows that the AUC value of the 1D-CNN diagnosis model reaches 0. 951, the average recognition rate of various faults in three random trainings reaches 92. 08%, and the average test set accuracy in 15 trainings reaches 94. 30%. and the average training time per generation is 0. 875 0 s, which has obvious advantages over DNN and RNN in various indicators.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: February 27,2023
  • Published:
Article QR Code