Remote sensing image rotation object detection based on key points
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TP391. 4

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Compared with ordinary images, high-resolution remote sensing images have the characteristics of diverse directions and large scale changes. Aiming at the problem of remote sensing image object detection, this paper proposes an R-CenterNet remote sensing image object detection algorithm. First, redesign the CenterNet network and add a rotation factor to the network structure to provide angle information for the detection frame; secondly, increase the network depth and improve the network detection performance; finally, to aggregate the information of different regions, further extract the multi-scale information of the object. This paper proposes an attention pyramid pooling module that combines the object feature attention information with multi-scale pooling information. The experimental results show that R-CenterNet has a better detection effect, and the mAP value is increased by 8% compared with the original CenterNet detection results.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: February 27,2023
  • Published:
Article QR Code