Abstract:The complex heterogeneous background in the nearinfrared images of photovoltaic solar cells makes the detection of internal defects become a very challenging problem.Thus, an object detection framework based on deeplearning residual channel attention Faster RCNN (RCAFaster RCNN) is proposed, which employs convolution layer and pooling layer to extract the image features, and sends them to the novel residual channel attention (RCA) module for complex background feature suppression and defect feature highlighting, then the region proposal network recommends a more accurate proposal containing defects, finally the classification and position network is applied to achieve highprecision defect classification and position estimation.The experimental results show that the defect detection accuracy of RCAFaster RCNN has improved to 8329%, which proves the effectiveness of the proposed method.