Reconstruction of demagnetization fault of six-phase permanent magnet synchronous motor based on super-twisting sliding-mode observer
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TM351

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem that the permanent magnet of the six-phase permanent magnet synchronous motor (SP-PMSM) is prone to demagnetize under complex operating conditions, a reconstruction method of permanent demagnetization fault is proposed based on the super-twisting algorithm. Firstly, the mathematical model of the demagnetization fault for SP-PMSM is constructed based on the vector space decomposition (VSD) theory through order reduction and decoupling. Secondly, taking the stator current as the state variables, the sliding-mode observer is designed using the super-twisting algorithm. The real-time reconstruction of rotor flux is realized according to the principle of sliding mode equivalence. A kind of strong quadratic Lyapunov function is used to ensure the stability of STA-SMO. Finally, the simulation and experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional sliding mode observer (SMO), the STA-SMO can reconstruct the demagnetization fault accurately, reduce chattering effectively and has a good robustness.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 20,2023
  • Published:
Article QR Code