侯北平,李丰余,朱 文,胡飞阳.基于改进 U-Net 的高压电缆绝缘层图像分割研究[J].电子测量与仪器学报,2023,37(10):232-243
基于改进 U-Net 的高压电缆绝缘层图像分割研究
Research on image segmentation of high-voltage cables insulation layer based on improved U-Net
  
DOI:
中文关键词:  绝缘层  图像分割  特征提取网络  注意力机制  迁移学习
英文关键词:insulation layer  image segmentation  feature extraction network  mechanism of attention  transfer learning
基金项目:浙江省“尖兵”“领雁”研发攻关计划项目(2022C04012)、浙江省基础公益研究计划项目(LGG21F030004)、浙江省重点研发计划项目(2021C04030)资助
作者单位
侯北平 1. 浙江科技学院自动化与电气工程学院,2. 浙江省智能机器人感知与控制国际科技合作基地 
李丰余 1. 浙江科技学院自动化与电气工程学院 
朱 文 1. 浙江科技学院自动化与电气工程学院,2. 浙江省智能机器人感知与控制国际科技合作基地 
胡飞阳 1. 浙江科技学院自动化与电气工程学院 
AuthorInstitution
Hou Beiping 1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology,2. Zhejiang International Science and Technology Cooperation Base of Intelligent Robot Sensing and Control 
Li Fengyu 1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology 
Zhu Wen 1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology,2. Zhejiang International Science and Technology Cooperation Base of Intelligent Robot Sensing and Control 
Hu Feiyang 1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology 
摘要点击次数: 777
全文下载次数: 899
中文摘要:
      针对目前高压电缆绝缘层检测操作繁琐、效率低、重复测量差异大等问题,设计了一种新型电缆绝缘层检测装置,提出 了一种基于改进 U-Net 的高压电缆绝缘层图像分割方法。 首先替换主干特征提取网络为 VGG16 网络,结合迁移学习将 VGG16 在 Pascal VOC2012 数据集中训练的权重作为预训练权重,利用通道注意力模块在跳跃连接处融入自适应特征加权机制,在上 采样过程中添加分组卷积,提高了语义分割精度;然后利用训练的最优权重进行绝缘层图像分割,提取轮廓区域特征并进行二 值化处理,使用连通区域算法对轮廓区域进行填充;最后,融合原始图像和分割区域生成完整绝缘层分割图像。 实验结果表明, 平均交并比和平均像素准确率达到 99. 56%和 99. 81%,较原网络效果提升明显,验证了该方法在高压电缆绝缘层分割上的 有效性。
英文摘要:
      Aiming at the current problems of cumbersome operation, low efficiency and large variation in repeated measurements of highvoltage cable insulation layer quality inspection, a new type of cable insulation layer inspection device is designed, and a high-voltage cable insulation layer image segmentation method based on improved U-Net is proposed. Firstly, the backbone feature extraction network is replaced with the VGG16 network, the weights trained by VGG16 in the Pascal VOC2012 dataset are used as the pre-training weights in combination with the transfer learning, the adaptive feature weighting mechanism is incorporated in the jump connections by using the channel attention module, as well as the grouped convolution is added in the up-sampling process, which improves the semantic segmentation accuracy. Next, the insulating layer image segmentation is performed using the trained optimal weights, the contour region features are extracted and binarised, and the contour region is filled using the connected region algorithm. Finally, the complete insulation layer segmentation image is generated by fusing the original image and the segmented region. The experimental results show that the mean intersection-over-union and mean pixel accuracy reach 99. 56% and 99. 81%, which is a significant improvement over the original network effect, and verifies the effectiveness of the method on the segmentation of the insulation layer of high-voltage cables.
查看全文  查看/发表评论  下载PDF阅读器