王 雷,何 坤,李宗帅,常东润.基于 BiLSTM-Attention 的迁移学习变工况故障识别方法研究[J].电子测量与仪器学报,2023,37(7):205-212
基于 BiLSTM-Attention 的迁移学习变工况故障识别方法研究
Transfer learning based on BiLSTM-Attention research on fault identificationmethods for variable operating conditions
  
DOI:
中文关键词:  故障诊断  深度学习  特征提取  迁移学习  Bi-LSTM  注意力机制
英文关键词:fault diagnosis  deep learning  feature extraction  transfer learning  Bi-LSTM  attention mechanism
基金项目:中央高校基本科研业务费民航大学专项(3122020025)项目资助
作者单位
王 雷 1. 中国民航大学工程技术训练中心 
何 坤 2. 中国民航大学电子信息与自动化学院 
李宗帅 2. 中国民航大学电子信息与自动化学院 
常东润 2. 中国民航大学电子信息与自动化学院 
AuthorInstitution
Wang Lei 1. Engineering Technology Training Center, Civil Aviation University of China 
He Kun 2. School of Electronic Information and Automation, Civil Aviation University of China 
Li Zongshuai 2. School of Electronic Information and Automation, Civil Aviation University of China 
Chang Dongrun 2. School of Electronic Information and Automation, Civil Aviation University of China 
摘要点击次数: 676
全文下载次数: 1302
中文摘要:
      针对传统深度学习网络模型在变工况条件下的故障诊断泛化能力差的问题,提出一种基于迁移学习的双向长短时记忆 网络和注意力机制(TLBA)融合的故障识别方法。 将原始故障数据划分为源域及目标域;并构建融合注意力机制的双向长短时 记忆网络(BiLSTM-Attention,BA)模型,之后使用此模型学习源域数据特征;最后利用迁移学习通过对目标域数据的学习,进一 步优化调整 BA 模型的网络参数,最终得到目标域的故障分类辨识模型。 以航空器翼梁故障为案例,结果表明,该方法与传统 故障诊断方法 BiLSTM-Attention 相比,其综合评价指标 F1-score 有 3. 4%的提高,故障平均诊断准确率在 91%以上;同时针对变工 况下的故障分类结果较为稳定。
英文摘要:
      Aiming at the problem of poor generalization ability of fault diagnosis of traditional deep learning network model under variable working conditions, a fault identification method based on the fusion of transfer learning bidirectional long short memory network and attention mechanism ( TLBA) is proposed. Divide the original fault data into source domain and target domain, and construct a bidirectional long short-term memory network (BA) model that integrates attention mechanisms, and then use this model to learn source domain data features. Finally, transfer learning is used to further optimize and adjust the network parameters of the BA model by learning the data in the target domain, and finally the fault classification identification model in the target domain is obtained. Taking the aircraft wing beam fault as an example, the results show that compared with the traditional fault diagnosis method BiLSTM-Attention, the comprehensive evaluation index F1-score of this method is improved by 3. 4%, and the average fault diagnosis accuracy is above 91%. At the same time, the fault classification results under variable operating conditions are relatively stable.
查看全文  查看/发表评论  下载PDF阅读器