王 雷,何 坤,李宗帅,常东润.基于 BiLSTM-Attention 的迁移学习变工况故障识别方法研究[J].电子测量与仪器学报,2023,37(7):205-212 |
基于 BiLSTM-Attention 的迁移学习变工况故障识别方法研究 |
Transfer learning based on BiLSTM-Attention research on fault identificationmethods for variable operating conditions |
|
DOI: |
中文关键词: 故障诊断 深度学习 特征提取 迁移学习 Bi-LSTM 注意力机制 |
英文关键词:fault diagnosis deep learning feature extraction transfer learning Bi-LSTM attention mechanism |
基金项目:中央高校基本科研业务费民航大学专项(3122020025)项目资助 |
|
|
摘要点击次数: 676 |
全文下载次数: 1302 |
中文摘要: |
针对传统深度学习网络模型在变工况条件下的故障诊断泛化能力差的问题,提出一种基于迁移学习的双向长短时记忆
网络和注意力机制(TLBA)融合的故障识别方法。 将原始故障数据划分为源域及目标域;并构建融合注意力机制的双向长短时
记忆网络(BiLSTM-Attention,BA)模型,之后使用此模型学习源域数据特征;最后利用迁移学习通过对目标域数据的学习,进一
步优化调整 BA 模型的网络参数,最终得到目标域的故障分类辨识模型。 以航空器翼梁故障为案例,结果表明,该方法与传统
故障诊断方法 BiLSTM-Attention 相比,其综合评价指标 F1-score 有 3. 4%的提高,故障平均诊断准确率在 91%以上;同时针对变工
况下的故障分类结果较为稳定。 |
英文摘要: |
Aiming at the problem of poor generalization ability of fault diagnosis of traditional deep learning network model under variable
working conditions, a fault identification method based on the fusion of transfer learning bidirectional long short memory network and
attention mechanism ( TLBA) is proposed. Divide the original fault data into source domain and target domain, and construct a
bidirectional long short-term memory network (BA) model that integrates attention mechanisms, and then use this model to learn source
domain data features. Finally, transfer learning is used to further optimize and adjust the network parameters of the BA model by learning
the data in the target domain, and finally the fault classification identification model in the target domain is obtained. Taking the aircraft
wing beam fault as an example, the results show that compared with the traditional fault diagnosis method BiLSTM-Attention, the
comprehensive evaluation index F1-score
of this method is improved by 3. 4%, and the average fault diagnosis accuracy is above 91%. At
the same time, the fault classification results under variable operating conditions are relatively stable. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|