张怀洲,行鸿彦,李浩琪,梁欣怡,李胤演.融合 LSTM 和改进 A∗ 算法的火灾逃生路径规划方法[J].电子测量与仪器学报,2023,37(4):69-79
融合 LSTM 和改进 A∗ 算法的火灾逃生路径规划方法
Fire escape path planning method based on LSTM and improved A∗algorithm
  
DOI:
中文关键词:  LSTM 神经网络模型  火势威胁态势蔓延  逃生路径规划
英文关键词:LSTM neural network model  fire threat situation spread  escape path planning
基金项目:国家自然基金(62171228)、国家重点研发计划(2021YFE0105500)项目资助
作者单位
张怀洲 1.南京信息工程大学电子与信息工程学院 
行鸿彦 1.南京信息工程大学电子与信息工程学院 
李浩琪 1.南京信息工程大学电子与信息工程学院 
梁欣怡 1.南京信息工程大学电子与信息工程学院 
李胤演 1.南京信息工程大学电子与信息工程学院 
AuthorInstitution
Zhang Huaizhou 1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology 
Xing Hongyan 1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology 
Li Haoqi 1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology 
Liang Xinyi 1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology 
Li Yinyan 1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology 
摘要点击次数: 1272
全文下载次数: 1551
中文摘要:
      本文针对高温环境下传感器节点存在误报、漏报、工作状态异常等问题,提出了融合长短时记忆网络模型( long short term memory,LSTM)和改进 A ∗ 算法的火灾逃生路径规划研究方法。 根据 LSTM 自适应学习火灾实时态势信息,建立异常节点 数据预测模型,实现异常节点的温度、一氧化碳浓度等威胁态势的预测;基于室内火灾实时态势信息,搭建火势威胁态势蔓延模 型,利用改进的 A ∗ 算法动态规划逃生路径,获取异常情况下火灾最佳安全逃生路径。 结果表明,该方法在不同火灾时期均能 规划出最佳安全逃生路径,为人员的撤退争取宝贵的时间,具有实际应用价值。
英文摘要:
      Aiming at the problems of false alarms, missing alarms and abnormal working status of sensor nodes in high temperature environment, this paper proposes a fire escape path planning research method combining LSTM and improved A ∗ algorithm. According to the LSTM, the real-time fire situation information was adaptive learned, and the abnormal node data prediction model was established to predict the threat situation of abnormal nodes, such as temperature and carbon monoxide concentration. Based on the real-time situation information of indoor fire, the fire threat situation spread model was built, and the improved A ∗ algorithm was used to dynamically plan the escape path to obtain the best safe escape path under abnormal conditions. The results show that this method can plan the best escape path in different fire periods, and gain valuable time for the evacuation of personnel, which has practical application value.
查看全文  查看/发表评论  下载PDF阅读器