改进Canny边缘算子和高斯混合模型的运动目标检测
DOI:
CSTR:
作者:
作者单位:

安徽工程大学 安徽省电气传动与控制重点实验室 芜湖 241000

作者简介:

通讯作者:

中图分类号:

TP 391.4

基金项目:

安徽省自然科学(1908085MF215),安徽省高校自然科学基金(KJ2018A0110),皖江高端装备制造协同创新中心开放(GCKJ2018013)


The Improved Canny Edge Operator and Gaussian Mixture Model for Moving Target Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在对视频中运动目标的检测,高斯混合模型能够达到较好的效果,但是容易受到光照突变和环境噪声的影响,并且运动目标完整的轮廓难以提取,本文在对Canny边缘检测算法进行改进,用中值滤波器和双边滤波器构成的混合滤波器代替边缘检测算法中固有滤波器,并且使用Otsu算法取代人工设置双阈值,避免丢失真实边缘,保证边缘信息的完整性,并且用隔帧处理的四帧差分法的到差分图像,获得运动目标区域,再利用高斯混合模型提取前景图像,结合两种算法的前景图像能够获得较完整的运动目标轮廓。根据实验结果分析,和传统的高斯混合模型相比,本文算法能够避免一定的光照突变的影响,解决了目标图像出现空洞及漏检造成边缘信息丢失的问题,具有更强的鲁棒性。

    Abstract:

    In the detection of moving targets in video, Gaussian mixture model can achieve better results, but it is easily affected by illumination mutation and environmental noise, and the integrated contour of moving targets is difficult to extract. This paper improves the Canny edge detection algorithm. The hybrid filter composed of the median filter and the bilateral filter replaces the inherent filter in the edge detection algorithm, and uses the Otsu algorithm instead of manually setting the double threshold to avoid losing the true edge, ensuring the integrity of the edge information, and processing with the frame. The Interframe processing four-frame difference method is applied to obtain the moving target region, and then the Gaussian mixture model is used to obtain the foreground image. Combining the foreground images of the two algorithms, a more integrated moving target contour can be obtained. According to the experimental results, contrast with the classic Gaussian mixture model, the presented algorithm can prevent the impact of certain illumination mutations, figure out the problem of hole in the target image and the loss of edge information caused by missed detection, and has stronger robustness.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-22
  • 最后修改日期:2019-07-12
  • 录用日期:2019-08-02
  • 在线发布日期:
  • 出版日期:
文章二维码