基于局部二值模式耦合双阈值LM优化的火焰图像边缘检测算法
DOI:
CSTR:
作者:
作者单位:

武汉理工大学

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金资助项目(60496315);湖北省自然科学基金项目(2018CFB586)


Flame Image Edge Extraction Based on Local Binary Mode Coupled Double Threshold LM Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前火焰图像边缘检测技术易受到近似亮度的影响,使其得到的边缘不够清晰、完整性不强等,定义了一种基于局部二值模式耦合双阈值LM优化的图像边缘检测算法。首先,将彩色图像转换为灰度图像,并根据统计分布调整图像的灰度。其次,采用Gaussian滤波器平滑图像,消除噪声影响。然后,利用局部二制模式(Local Binary Patterns,LBP)处理图像,并采用全局阈值技术进行计算,获取边缘局部特征。再通过非极大值抑制(Non-maximum suppression)算子来得到更精确的边缘,在非极大值抑制中选择2个阈值来创建2个不同的边缘图像。为了加快这2个非极大值抑制阈值的优化过程,采用Levenberg-Marquardt(LM)优化算子,优化了基于均方误差的成本函数,消除了虚假边缘的同时保留了细小边缘。此外,利用火焰图像的面积、平均值、标准差、方差等各种参数对火焰图像进行分析,从而准确得到火焰温度以及预测燃烧的稳定性。通过实验表明:与当前火焰图像边缘检测技术相比,所提算法能够具有更高的边缘检测质量,火焰边缘完整度更好,可以有效去除噪声和不相关的伪影。

    Abstract:

    In view of the fact that the current flame image edge extraction algorithm was susceptible to the influence of approximate brightness, make the edges not clear enough, integrity was not strong, etc, an image edge extraction scheme based on local binary mode coupled with double threshold LM optimization was defined. Firstly, the color image was transformed into gray image, and the gray level of the image was adjusted according to the statistical distribution of the image. Secondly, the image was smoothed by using the Gaussian filter to eliminate the influence of noise. Then, local binary patterns (LBP) were used to process images, and global threshold technique was used to calculate the local features of edges. Then, the non-maximum suppression operator was used to get more accurate edges, and two thresholds are selected to create two different edge images in non-maximum suppression. In order to speed up the determination of non-maximum suppression thresholds, Levenberg-Marquardt (LM) optimization algorithm was used to optimize the cost function based on mean square error, eliminating false edges while retaining small edges. In addition, the area, average value, standard deviation and variance of the flame image were used to analyze the flame image, thus the flame temperature can be accurately obtained, and the stability of flame combustion can be predicted. Experiments show that compared with the current flame image edge detection technology, this proposed algorithm has higher edge detection quality and better flame edge integrity, which can remove noise and irrelevant artifacts.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-21
  • 最后修改日期:2019-03-26
  • 录用日期:2019-04-02
  • 在线发布日期:
  • 出版日期:
文章二维码