消除椒盐噪声的基于纹理特征的决策滤波
DOI:
CSTR:
作者:
作者单位:

1.广东医科大学;2.广东工业大学;3.南方医科大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61170320);广东省自然科学基金(2015A030310178);广东省科技计划项目(2017B010110015);广州市科技计划项目(201604016034);广东省医学科研基金(B2018190); 湛江市科技攻关计划项目(2017B01142);广东医科大学科研基金(GDMUM201815, GDMUM201827)


Texture features based decision filter for removing salt and pepper noise
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像中椒盐噪声的有效去除,取决于噪声检测和噪声灰度估测的准确性,但现有的滤波算法在噪声检测和噪声灰度估测上的准确性不高。因此,我们提出了基于图像纹理特征的决策滤波算法。算法根据椒盐噪声的灰度最值特征和独立性,以及图像纹理的特征进行噪声检测,将噪声与信号像素准确地区分开。算法根据纹理中像素灰度的平滑变化特征,将邻域中的信号像素进行分组,然后基于相关性与概率的意义,取与邻域均值最接近的分组的中值作为噪声像素的估测值。实验的结果证明,所提出的算法检测噪声更加准确,其去噪结果对应的PSNR比现有的算法平均提高1.9dB以上,IEF比现有的算法平均提高119以上。因此,相对于现有的算法,所提出的算法在去噪性能上具有显著的优越性。

    Abstract:

    The effectiveness of removing salt and pepper noise lies on the noise detection and the intensity estimation of noisy pixel, but existing filters show no very good performance for them. In view of this, we propose a decision filter based on image texture features. The proposed method performs noise detection by taking full advantage of the characteristics of salt and pepper noise, i.e., the intensity of noise takes extreme values and the noises are independent of noise free pixels, as well as the texture features of image; thus, correctly discriminates the noisy pixels from the noise free pixels. And based on the characteristic of smoothly varying intensities of image texture, the proposed method groups the neighbor noise free pixels; and then, in the light of correlation and significance of probability, takes the median of the group, which is closest to the mean of neighbor noise free pixels, as the intensity of noisy pixel. The experimental results show that, compared to existing filters, the proposed method can perform a more accurate noise detection; and its resulted PSNR increases averagely by more than 1.9dB, IEF increases averagely by more than 119. Thus, it can conclude that the denoising performance of the proposed method is superior to the existing filters.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-20
  • 最后修改日期:2019-01-26
  • 录用日期:2019-01-28
  • 在线发布日期:
  • 出版日期:
文章二维码