基于无迹卡尔曼滤波预测的锅炉吹灰优化
DOI:
CSTR:
作者:
作者单位:

中北大学 电气与控制工程学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

山西省青年自然科学基(201601D021075);山西省高等学校科技创新项目(2014143);山西省回国留学人员科研项目(2015-083);中北大学自然科学基金项目(2016032、2017025);山西省重点研发计划重点项目(201703D111011)


Boiler soot blowing optimization based on unscented Kalman filter prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对锅炉受热面从清洁到产生积灰和结渣导致锅炉传热效率降低等问题,以清洁因子为监测指标,提出一种基于无迹卡尔曼滤波算法的实时吹灰预测方法。采用双指数函数拟合分析清洁因子退化数据,利用无迹卡尔曼滤波算法对模型参数进行更新,并预测清洁因子未来的变化趋势。同时提出一种基于单位时间传热量最大的吹灰优化模型对吹灰时间进行进一步的优化。以某省煤器的清洁因子数据为例,通过与扩展卡尔曼滤波算法进行比较分析,发现所提方法能够更准确地预测吹灰时间,并进行吹灰优化实例计算,验证了所提优化模型的可行性。

    Abstract:

    Aiming at the problems of boiler heating surface from cleaning to ash deposition and slagging, the heat transfer efficiency of boiler is reduced. With the cleaning factor as the monitoring index, a real-time soot blowing prediction method based on unscented Kalman filter algorithm is proposed. The clean factor degradation data was analyzed by double exponential function fitting, and the model parameters were updated by the unscented Kalman filter algorithm, and the future trend of the cleaning factor was predicted. At the same time, a soot-blowing optimization model with the largest heat transfer per unit time is proposed to further optimize the sootblowing time. Taking the cleaning factor data of a economizer as an example, by comparing with the extended Kalman filter algorithm, it is found that the proposed method can predict the soot blowing time more accurately and perform the optimization of soot blowing optimization to verify the optimization proposed in this paper. The feasibility of the model.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-12
  • 最后修改日期:2019-01-11
  • 录用日期:2019-01-23
  • 在线发布日期:
  • 出版日期:
文章二维码