改进双向A*联合最优控制的无人农机轨迹规划
DOI:
CSTR:
作者:
作者单位:

江苏大学电气信息工程学院镇江212013

作者简介:

通讯作者:

中图分类号:

TP242.6

基金项目:

国家自然科学基金( 62203189, 62373170)、江苏省自然科学基金(BK20220518)、中国博士后科学基金(2024M751187)、农业农村部黄淮海智慧农业技术重点实验室开放基金(202403)资助


Improved bidirectional A* with optimal control for unmanned agricultural vehicle trajectory planning
Author:
Affiliation:

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决无人农机在复杂狭窄的非结构化环境下轨迹规划效率低且容易陷入局部解的问题,提出了一种改进双向A*算法联合最优控制的方法。首先,引入方向导向搜索并改进启发式函数,加快双向A*在大规模复杂环境中的路径规划速度,同时设计路径平滑策略,减少路径拐点,提升参考路径的质量;接着,针对最优控制问题中避障约束的处理难度随障碍物密度增大而显著上升的问题,构建安全驾驶走廊,降低环境复杂度对计算效率的影响;最后,基于车辆非线性运动学模型制定惩罚迭代框架,逐步求解优化问题,提高轨迹规划成功率,获取全局最优或近似最优轨迹。在3种不同规模的地图仿真,结果表明,提出的改进双向A*算法与A*算法相比,规划时间和路径长度平均减少了48.0%和5.2%,路径也更平滑。在无人农机轨迹规划中,所提方法与改进Hybrid A*算法、变体1和变体2相比,生成的轨迹代价分别减少了19.3%、5.4%和33.1%,轨迹质量具有明显的优势,为实际应用提供了有效的解决方案。

    Abstract:

    In order to address the issues of low trajectory planning efficiency and easy to fall into local solutions of unmanned agricultural vehicles in complex and narrow unstructured environments, an improved bidirectional A* algorithm combined with optimal control method is proposed in this paper. Firstly, the direction-guided search is introduced and the heuristic function is improved to accelerate the speed of bidirectional A* path planning in large-scale complex environments. Additionally, a path smoothing strategy is designed to reduce the number of inflection points and improve the quality of the reference path. Next, to address the challenge that the difficulty of handling obstacle avoidance constraints in optimal control problems increases significantly with the density of obstacles, safe driving corridors are constructed to reduce the impact of environmental complexity on computational efficiency. Finally, a penalty iteration framework is established based on the vehicle’s nonlinear kinematic model to solve optimization problems iteratively, thereby improving the success rate of trajectory planning and obtaining globally optimal or approximately optimal trajectories. In three different scale map simulations, the results show that compared with A* algorithm, the proposed improved bidirectional A* algorithm reduces the planning time and path length by 48.0% and 5.2%, and the path is smoother. In the unmanned agricultural vehicle trajectory planning, compared with Hybrid A* algorithm, variant 1 and variant 2, the proposed method reduces the cost of generated trajectory by 19.3%, 5.4% and 33.1%, respectively. The trajectory quality has obvious advantages, and provides an effective solution for practical application.

    参考文献
    相似文献
    引证文献
引用本文

李钰,孙金林,马莉,丁世宏.改进双向A*联合最优控制的无人农机轨迹规划[J].电子测量与仪器学报,2025,39(4):34-41

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码