改进YOLOv8n的遥感图像目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.华北理工大学电气工程学院唐山063000;2.华北理工大学招生就业处唐山063000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN957.52

基金项目:


Improve the YOLOv8n object detection algorithm for remote sensing images
Author:
Affiliation:

1.Faculty of Electrical Engineering, North China University of Science and Technology, Tangshan 063000, China; 2.Admissions and Employment Office, North China University of Science and Technology,Tangshan 063000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像中目标尺度差异较大、类别多样且分布不均等因素造成检测时目标定位不精准、漏检和误检等问题,提出一种改进YOLOv8n的遥感图像目标检测算法。首先,构建SC_C2F模块作为主干网络的特征提取模块,通过在Bottlececk结构中引入空间通道重建卷积,增强不同尺度通道和空间的特征提取能力;其次,设计ESPPM模块替换原金字塔池化模块,引入自适应平均池化层与大可分离核残差注意力机制,丰富上下文信息,提高模型多尺度特征聚合能力;再次,结合GSConv轻量化卷积与VoVGSCSP结构,引入Slim-PAN结构到颈部网络,在减少模型计算量的同时保持检测精度;最后,引入增加参数表示法的旋转框作为角度坐标回归,并设计RBCL损失函数计算旋转框损失,使检测过程更加贴合目标形状,提高对小目标和密集目标的检测精度。将改进的YOLOV8n算法在DOTA数据集上进行实验,相较原算法mAP@0.5提高5.1%,计算量降低0.4 GFLOPs。

    Abstract:

    To address the issues of inaccurate target localization, missed detections, and false detections caused by large scale differences, diverse categories, and uneven distribution of targets in remote sensing images, an improved YOLOv8n remote sensing image target detection algorithm is proposed. Firstly, the SC_C2F module is constructed as the feature extraction module of the backbone network. By introducing spatial channel reconstruction convolution into the Bottlececk structure, the feature extraction ability of different scale channels and spaces is enhanced; Secondly, design an ESPPM module to replace the original pyramid pooling module, introduce an adaptive average pooling layer and a large separable kernel residual attention mechanism, enrich contextual information, and improve the model’s multi-scale feature aggregation ability; Again, by combining GSConv lightweight convolution with VoVGSCSP structure, the Slim PAN structure is introduced into the neck network to reduce model computation while maintaining detection accuracy; Finally, a rotation box with added parameter representation is introduced as the angle coordinate regression, and an RBCL loss function is designed to calculate the rotation box loss, making the detection process more in line with the target shape and improving the detection accuracy for small and dense targets. The improved YOLOV8n algorithm will be tested on the DOTA dataset and compared to the original algorithm mAP@0.5 Increase by 5.1% and reduce computational load by 0.4 GFLOPs.

    参考文献
    相似文献
    引证文献
引用本文

王海群,武泽锴,晁帅.改进YOLOv8n的遥感图像目标检测算法[J].电子测量与仪器学报,2025,39(4):84-94

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码