多注意力残差脉冲神经网络的接地网故障诊断
DOI:
CSTR:
作者:
作者单位:

辽宁工程技术大学电气与控制工程学院葫芦岛125105

作者简介:

通讯作者:

中图分类号:

TN06;TP183

基金项目:

辽宁省教育厅科技创新团队项目(LJ222410147025)资助


Multi-attention residual spiking neural network-based grounding grid fault diagnosis
Author:
Affiliation:

Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部自适应对比度增强方法,增强不同故障等级间的图像特征;其次,利用所提出的多注意力脉冲残差块,构建MAR-SNN模型,实现对接地网故障等级的识别任务,该残差模块通过在两次脉冲神经元后进行身份映射,同时引入多注意力机制,并采用参数-泄露-积分-触发脉冲神经元与批归一化层,分别提升模型识别准确率;最后,利用EIT与训练好的MAR-SNN模型,建立对接地网故障的智能诊断模型。模型对比分析结果表明, MAR-SNN在接地网智能故障诊断中的效果优于现有先进模型,在测试集中准确率可达96.31%,其中在轻、中腐蚀程度下的准确率可达100%、97.20%;同时实验结果证明,所提方法可以完成对接地网故障检测与等级识别的综合诊断任务,实现对接地网的智能故障诊断,验证了该方法的有效性与可行性。

    Abstract:

    In this paper, a multi-attention residual spiking neural network (MAR-SNN)-based grounding grid fault diagnosis method is proposed to deal with the existing single and unintelligent problems in the diagnosis of grounding grid. Firstly, creating the grounding grid dataset for training, using the electrical impedance tomography (EIT) after re-meshing to improve imaging speed and enhancing image features between different fault levels by using the local adaptive contrast enhancement method; Secondly, the MAR-SNN model is built by a new multi-attention spiking residual block is proposed to realize the intelligent fault diagnosis of grounding grid. The residual block performs identity mapping after two spiking neurons, adopts PLIF spiking neurons and BN layer, and introduces multi-attention mechanism to improve the accuracy of model recognition separately; Finally, using EIT and the trained MAR-SNN model to construct the intelligent fault diagnosis model of grounding grid. The comparative analysis of the models shows that the performance of MAR-SNN is superior to the existing advanced models, and in the test set the accuracy is 96.31%. Among them, the accuracy of mild and medium corrosion degree can reach 100% and 97.20% respectively. At the same time, the experimental results show that the proposed method can realize the intelligent fault diagnosis of grounding grid including fault detection and level identification, so verify the effectiveness and feasibility of the method.

    参考文献
    相似文献
    引证文献
引用本文

闫孝姮,丁一凡,陈伟华,张雪.多注意力残差脉冲神经网络的接地网故障诊断[J].电子测量与仪器学报,2025,39(3):77-91

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码