基于特征提取与改进POA的光伏阵列故障诊断
DOI:
CSTR:
作者:
作者单位:

上海海洋大学

作者简介:

通讯作者:

中图分类号:

基金项目:

崇明区科委2023年度可持续发展科技创新行动计划项目(CKST2023-01)


Photovoltaic Array Fault Diagnosis Based on Feature Extraction and Improved Pelican Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏阵列常处于复杂恶劣的环境中,易发生多种类型和不同程度的故障?为提高光伏阵列在恶劣环境下的故障诊断准确率,提出一种基于特征提取与改进鹈鹕算法(IPOA)优化支持向量机(SVM)的光伏阵列故障诊断模型算法?首先,在MATLAB/Simulink仿真平台对15种典型故障状态进行模拟,构建12维故障特征向量,并采用核主成分分析(KPCA)进行特征融合与提取,以增强特征表达能力;其次,针对传统鹈鹕算法在全局搜索与局部开发中的局限性,引入改进的Tent混沌映射?惯性权重?非线性收敛因子及自适应t分布变异策略,较大程度提升算法寻优性能;最后通过IPOA对SVM模型的惩罚因子C与核参数γ进行优化,建立IPOA-SVM光伏阵列故障诊断模型,并分别通过仿真模拟与实验测试对模型进行验证?结果表明:与传统6维特征量相比,采用所提12维特征量的诊断准确率更高;改进的算法模型基于仿真数据和实验数据的故障诊断分类准确率分别达到98.55%和97.93%,明显优于其他对比算法模型,在光伏阵列故障诊断中具有更高的准确率?

    Abstract:

    Photovoltaic (PV) arrays often operate in complex and harsh environments, making them susceptible to various types and degrees of faults. To enhance the accuracy of fault diagnosis in such challenging conditions, this study proposes a novel fault diagnosis model based on feature extraction and an improved pelican optimization algorithm (IPOA) optimized support vector machine (SVM). Firstly, 15 typical fault states are simulated on the MATLAB/Simulink platform, from which a 12-dimensional fault feature vector is constructed. Kernel principal component analysis (KPCA) is then applied for feature fusion and extraction to improve feature representation capabilities. Secondly, to address the limitations of traditional pelican optimization algorithms in balancing global search and local exploitation, enhancements are introduced, including the Tent chaotic map, inertia weight, nonlinear convergence factors, and an adaptive t-distribution mutation strategy, all of which significantly improve the algorithm's optimization performance. Finally, the IPOA is used to optimize the penalty factor C and kernel parameter γ of the SVM model, establishing the IPOA-SVM PV array fault diagnosis model, which is then validated through both simulation and experimental tests. The results show that, compared to the traditional 6-dimensional feature set, the proposed 12-dimensional feature set achieves higher diagnostic accuracy. The improved model demonstrates fault diagnosis classification accuracies of 98.55% and 97.93% for simulation and experimental data, respectively, significantly outperforming other comparison models and demonstrating higher accuracy in PV array fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2025-02-21
  • 录用日期:2025-02-24
  • 在线发布日期:
  • 出版日期:
文章二维码