基于合作博弈策略和DBO-BiLSTM-Attention的电动汽车充电桩故障预测(青委会推荐)
DOI:
CSTR:
作者:
作者单位:

1.天津职业技术师范大学自动化与电气工程学院 天津;2.天津市信息传感与智能控制重点实验室 天津;3.中国农业大学信息与电气工程学院

作者简介:

通讯作者:

中图分类号:

TP391.5

基金项目:

国家重点研发计划(2022YFB2403002)、天津市科技计划项目(23YDTPJC00320)项目资助


Fault prediction of electric vehicle charging stations based on cooperative game strategy and DBO-BiLSTM-Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电动汽车充电桩故障率较高的问题,提出一种基于合作博弈策略和蜣螂优化算法-双向长短期记忆网络-注意力机制(DBO-BiLSTM-Attention)的电动汽车充电桩故障预测方法。首先,通过参数统计分布处理异常值,通过均值填充处理缺失值,对处理后的数据归一化操作;其次,选取多个单一赋权法计算特征权重,通过合作博弈策略计算组合权重,并对参数特征矩阵进行放大;然后,搭建DBO-BiLSTM-Attention模型,在仿真实验下,训练集和测试集的准确率、F1系数分别为0.89、0.89、0.90和0.90。最后,构建相关对比实验,结果表明,所提模型具有更好的性能,验证所提模型的有效性和合理性。

    Abstract:

    Aiming at the problem of the high failure rate of electric vehicle charging piles, a fault prediction method of electric vehicle charging piles based on cooperative game strategy and dung beetle optimization algorithm-bidirectional long-term and short-term memory network-attention mechanism (DBO-BiLSTM-Attention) is proposed. Firstly, the abnormal values are processed by parameter statistical distribution map, the missing values are processed by mean filling, and the processed data are normalized. Secondly, multiple single-weighting methods are selected to calculate the feature weight, the combination weight is calculated by the cooperative game strategy, and the parameter feature matrix is amplified. Then, the DBO-BiLSTM-Attention model is built. Under the simulation experiment, the accuracy and F1 coefficient of the training set and the test set are 0.89,0.89,0.90 and 0.90, respectively. Finally, relevant comparative experiments are constructed. The results show that the proposed model has better performance and verifies the validity and rationality of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2025-02-19
  • 录用日期:2025-02-21
  • 在线发布日期:
  • 出版日期:
文章二维码