高性能实时轻量化嵌入式缺陷检测网络的构建
DOI:
CSTR:
作者:
作者单位:

广东工业大学机电工程学院广州510006

作者简介:

通讯作者:

中图分类号:

TP391.41;TN41

基金项目:

广东省科技计划项目(2019B01001017)、2023年佛山市促进高校科技成果服务产业发展扶持项目(2023DZXX02)、佛山市南海区2024年(第14批)创新创业人才团队项目资助


Construction of high-performance real-time lightweight embedded defect detection network
Author:
Affiliation:

School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业嵌入式场景中缺陷检测模型存在参数量大、计算复杂度高与实时性要求之间的矛盾,提出由跨阶段部分卷积(CSPPC)模块、卷积跨尺度特征融合模块(CCFM)及SA_Detect融合模块构建CCS-YOLO轻量化缺陷检测网络,通过设计消融实验和对比实验验证其轻量化性能。为增强在处理复杂视觉任务时的特征提取与表达能力并结合部分卷积操作优化模型的性能与效率采用CSPPC模块,融合不同尺度的特征提升模型对尺度变化的适应性和对小尺度对象的检测能力采用CCFM模块,进一步减少模型参数量实现模型轻量化采用融合共享卷积的SA_Detect模块,有效提升特征表达、目标定位和分类性能。 实验结果表明,CCS-YOLO模型与YOLOv8n相比,模型大小、计算量和权重参数分别减少了56.7%、51.9%和54.0%,轻量化效果显著,并在RK3568嵌入式平台上部署检测速度维持在37 fps以上,实时性能得到验证,实用高效。可见系统的应用性价比得到提高,有效克服精度稍微下降带来的不足,而所构建的缺陷检测网络CCS-YOLO能够解决工业嵌入式场景中的资源受限问题,实现低算力设备达到高性能实时轻量化的可行方案,具有重要的工程价值。

    Abstract:

    Aiming at the contradiction between the large number of parameters, high computational complexity and realtime requirements of defect detection models in industrial embedded scenarios, a CCS-YOLO lightweight defect detection network is proposed to be constructed by CSPPC module, CCFM module and SA_Detect fusion module. Its lightweight performance is verified by designing ablation experiments and comparative experiments. In order to enhance the feature extraction and expression capabilities when processing complex visual tasks and combine partial convolution operations to optimize the performance and efficiency of the model, the CSPPC module is used. The CCFM module is used to fuse features of different scales to improve the model’s adaptability to scale changes and the ability to detect small-scale objects. The SA_Detect module that fuses shared convolutions is used to further reduce the number of model parameters and achieve model lightweight, which effectively improves feature expression, target positioning and classification performance. The experimental results show that compared with YOLOv8n, the model size, computational complexity and weight parameters of the CCS-YOLO model are reduced by 56.7%, 51.9% and 54.0% respectively, with a significant lightweight effect.The detection speed is maintained above 34 fps when deployed on the RK3568 embedded platform, and the real-time performance is verified, which is practical and efficient. It can be seen that the application cost-effectiveness of the system has been improved, effectively overcoming the shortcomings caused by a slight decrease in accuracy. The constructed defect detection network CCS-YOLO can solve the problem of resource constraints in industrial embedded scenarios and realize a feasible solution for low-computing power devices to achieve high performance, real-time and lightweight, which has important engineering value.

    参考文献
    相似文献
    引证文献
引用本文

许志杰,吴黎明,张巧芬,王桂棠.高性能实时轻量化嵌入式缺陷检测网络的构建[J].电子测量与仪器学报,2025,39(4):193-202

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码