汽车电控齿轮泵车载工况故障诊断方法研究
DOI:
CSTR:
作者:
作者单位:

1.重庆邮电大学复杂系统与自主控制重庆市重点实验室重庆400065;2.重庆长江电工工业集团有限公司重庆 401336;3.重庆红宇精密工业集团有限公司重庆402706;4.国网宁夏电力有限公司银川供电公司银川750011

作者简介:

通讯作者:

中图分类号:

TH32;TN06

基金项目:

重庆市自然科学基金面上项目(CSTB2024NSCQ-MSX1044)、重庆市教委科技研究项目(KJQN202200634)资助


Research on the fault diagnosis method of automotive electronically controlled gear pump under on-board working conditions
Author:
Affiliation:

1.Chongqing Key Laboratory of Complex Systems and Autonomous Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2.Chongqing Changjiang Electrician Appliances Industries Group Co. Ltd., Chongqing 401336, China; 3.Chongqing Hongyu Precision Industry Group Co. Ltd., Chongqing 402706, China; 4.State Grid Ningxia Electric Power Co. Ltd., Yinchuan Power Supply Company, Yinchuan 750011,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究复杂工况下汽车电控齿轮泵故障状态,需实现对齿轮泵振动的实时监测,并对故障信号的演变规律进行特征提取。首先,建立了齿轮泵动态数学模型,通过理论分析明确了齿轮泵在正常运行和故障状态下的振动来源及其特征,为故障诊断提供了理论基础。然后,根据齿轮泵的运行特点,设计并搭建了油泵齿轮故障实验平台,模拟了多种工况下的齿轮故障模式,对采集到的信号进行时频分析,提取了反映故障信息的最优指标参数。最后,采用常规数据处理方法和改进的完全自适应噪声集合经验模态分解法,对各类工况下的不同故障模式进行对比诊断。研究结果表明,在保证分解效率和故障识别准确率的前提下,提出的改进型完全自适应噪声集合经验模态分解法在分解时间上平均提升了28.45%,齿轮泵在高转速下的故障识别准确率在提升了1.29%。验证了该方法的可靠性和准确性,为齿轮泵状态监测和故障诊断技术提供了的理论依据和工程参考。

    Abstract:

    To investigate the fault states of automotive electronically controlled gear pumps under complex working conditions, it is necessary to achieve real-time monitoring of gear pump vibrations and extract the evolutionary characteristics of fault signals. Firstly, a dynamic mathematical model of gear pump was established, and the source and characteristics of gear pump vibration in normal operation and fault states were clarified through theoretical analysis, providing a theoretical basis for fault diagnosis. Then, based on the operating characteristics of the gear pump, an oil pump gear failure experiment platform was designed and built, which simulated the gear failure mode under various working conditions, conducted time-frequency analysis of the collected signals, and extracted the optimal indicators that reflected the fault information. parameter. Finally, conventional data processing methods and improved empirical modal decomposition of fully adaptive noise ensembles are used to compare and diagnose different fault modes under various operating conditions. The research results show that under the premise of ensuring the decomposition efficiency and fault identification accuracy, the proposed improved fully adaptive noise ensemble empirical modal decomposition method has increased by an average of 28.45% in decomposition time, and the fault of gear pumps at high speeds. The recognition accuracy rate has increased by 1.29%. The reliability and accuracy of this method are verified, and the theoretical basis and engineering reference for gear pump status monitoring and fault diagnosis technology are provided.

    参考文献
    相似文献
    引证文献
引用本文

刘行谋,魏钞,杨辉,肖遥,杨宁.汽车电控齿轮泵车载工况故障诊断方法研究[J].电子测量与仪器学报,2025,39(5):227-240

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码