改进YOLOv8n的多尺度轻量化水下目标检测
DOI:
CSTR:
作者:
作者单位:

辽宁科技大学计算机与软件工程学院鞍山114000

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391

基金项目:

国家自然科学基金(62072086)、辽宁省教育厅项目(LJKM20220646)资助


Improved YOLOv8n multi-scale and lightweight underwater target detection
Author:
Affiliation:

School of Computer and Software Engineering, University of Science and Technology Liaoning, Anshan 114000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于水下检测仪器的存储和计算资源有限,使用高参数量的模型会占用更多的存储空间和计算能力。为了解决这一问题,提出了一种基于YOLOv8n改进的目标检测模型—YOLOv8n-MAL,该模型在保持检测精度的同时,实现了整体的轻量化。首先,提出了一种轻量型多尺度注意力机制(MSCBAM),通过不同大小的卷积核和池化操作,能够从输入特征图中提取不同尺度的特征,可以提升模型在复杂场景中的鲁棒性,确保模型在面对不同类型的输入时都能维持较高的检测精度。然后,设计新的颈部模型MSFFN,对比原颈部模型增强了模型多尺度融合的能力,加强了不同层级特征的交互,使得高层次和低层次特征能够更加充分地结合,这种跨层级融合能够更有效地利用网络的特征表示能力,避免信息在传递过程中的丢失或弱化,进而提升模型的检测效果。其次,提出了轻量多尺度卷积模块(LMSCM),并将该模块和部分卷积融入到C2F模块中构成PC2F-LMS,通过引入更高效的卷积结构和轻量化设计,增强了特征提取和表达的能力。最后,使用WIoU优化原网络损失函数。实验结果表明,改进后的算法在URPC数据集上的平均精度均值(mAP)mAP@0.5提高了1.4%,与YOLOv8n算法相比参数量下降了38.6%,为水下目标检测提供了有效的参考价值。

    Abstract:

    Due to the limited storage and computing resources of underwater detection instruments, using high-parameter models will occupy more storage space and computing power. To solve this problem, a target detection model based on YOLOv8n, called YOLOv8n-MAL, was proposed, which achieves lightweight overall while maintaining detection accuracy. Firstly, a lightweight multi-scale convolutional block attention module (MSCBAM) is proposed, which can extract features of different scales from input feature graphs through convolution kernel and pooling operations of different sizes. It can improve the robustness of the model in complex scenarios and ensure that the model can maintain high detection accuracy in the face of different types of inputs. Then, a new neck model multi-scale feature fusion network (MSFFN) is designed. Compared with the original neck model, the multi-scale fusion capability of the model is enhanced, and the interaction of features at different levels is strengthened, so that the high-level and low-level features can be more fully combined. This cross-level fusion can make use of the feature representation ability of the network more effectively, avoid the loss or weakening of information in the process of transmission, and improve the detection effect of the model. Secondly, a lightweight multi-scale convolution module lightweight multi-scale convolution module (LMSCM) is proposed, and the module and some convolution modules are integrated into the C2F module to form PC2F-LMS. By introducing a more efficient convolution structure. Finally, the original network loss function is optimized using WIoU. The experimental results show that the average accuracy mAP@0.5 of the improved algorithm on the URPC dataset is increased by 1.4%, and the number of parameters is reduced by 38.6% compared with the YOLOv8n algorithm, which provides an effective reference value for underwater target detection.

    参考文献
    相似文献
    引证文献
引用本文

苗力恒,田莹.改进YOLOv8n的多尺度轻量化水下目标检测[J].电子测量与仪器学报,2025,39(4):141-151

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码