基于EKF-HInformer模型估计汽车动力电池的SOC&SOH
DOI:
CSTR:
作者:
作者单位:

1.湖南工业大学电气与信息工程学院株洲412007;2.电传动控制与智能装备湖南省重点实验室株洲412007

作者简介:

通讯作者:

中图分类号:

TN919.5; TP183

基金项目:

国家重点研发计划基金(2019YFE0122600)、湖南省教育厅重点科研项目(22A0423)、湖南省自然科学基金(2023JJ60267,2022JJ50073)项目资助


SOC and SOH of the battery are estimated based on the EKF-HInformer model
Author:
Affiliation:

1.College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China; 2.Hunan Key Laboratory of Electric Drive Control and Intelligent Equipment, Zhuzhou 412007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。

    Abstract:

    To address the issues of low accuracy and poor robustness in traditional state of charge (SOC) and state of health (SOH) estimation models, an improved model, EKF-HInformer, is proposed based on the extended Kalman filter (EKF) and the deep learning model Informer. This model enables real-time and accurate estimation of the SOC and SOH of electric vehicle batteries. First, the EKF algorithm is used to normalize the real-time battery data, and the adaptive gain factor is adjusted to reduce noise fluctuations, enhancing the performance of EKF data filtering. Then, the Informer network model is used to intelligently estimate the normalized battery data. To reduce the bias in attention weights caused by outliers or abnormal values, the Hampel algorithm is applied to optimize the Informer model, improving the feature learning ability of the multi-head probabilistic sparse self-attention mechanism. Finally, the filtered data is fed into the HInformer network to estimate real-time SOC and SOH. Experiments are conducted using battery datasets from the University of Oxford and the University of Maryland. The results show that the estimation accuracy for SOC and SOH exceeds 99.5%, with RMSE less than 1% and MAXE less than 0.5%. Compared to traditional Informer, Transformer, and LSTM models, this model is faster and more accurate in estimating SOC and SOH, demonstrating superior robustness and generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

彭自然,杨肖阳,肖伸平.基于EKF-HInformer模型估计汽车动力电池的SOC&SOH[J].电子测量与仪器学报,2025,39(3):21-33

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码