全血光谱融合评估心血管风险方法研究
DOI:
CSTR:
作者:
作者单位:

东北大学信息科学与工程学院沈阳110819

作者简介:

通讯作者:

中图分类号:

TN214;TH741

基金项目:

天津市卫健委科技项目(ZC20121)、国家自然科学基金(61601104)、河北省自然科学基金(F2017501052)、中央高校基本科研经费(N2023021)项目资助


Research on cardiovascular disease risk assessment method based on whole blood spectral information fusion
Author:
Affiliation:

School of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    心血管疾病是世界人口发病和死亡的最大原因之一。及时且可靠的心血管疾病风险评估是减轻患病风险,保障生命安全的关键。提出了一种高效、便捷的心血管疾病风险评估方法。采集了108个全血样本的傅里叶变换红外衰减全反射光谱和拉曼光谱进行风险评估模型的构建与评价。针对基于传统最小二乘法(PLS)、联合区间偏最小二乘法(siPLS)等算法进行特征提取而建立的风险评估模型效能低下的问题,提出了化学键驱动的区间联合偏最小二乘算法(CBDsiPLS)用于特征提取,并结合机器学习构建了单一数据的风险评估模型,测试结果表明该方法优于传统的特征提取算法。此外,利用中红外与拉曼光谱的信息互补性,进行特征级信息融合后结合机器学习方法建立融合数据的风险评估模型。最终的融合数据风险评估模型的准确率均超过90%,灵敏度均超过80%,特异性均达到95%。实验结果表明,所提出的方法可以实现对心血管疾病风险的有效评估。

    Abstract:

    Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide. Timely and reliable risk assessment is crucial for reducing disease risk and ensuring safety. The aim of this research is to propose an efficient and convenient risk assessment method for cardiovascular disease. In this research, Fourier transform infrared attenuated total reflectance spectra and Raman spectra of 108 whole blood samples were collected for the construction and evaluation of risk assessment models. To address the issue of low efficiency in risk assessment models based on traditional PLS, siPLS, and other feature extraction algorithms, a chemical bond-driven synergy interval partial least squares algorithm (CBDsiPLS) is proposed for feature extraction, and combined with machine learning to construct a risk assessment model using single data sets. The test results show that the proposed method outperforms traditional feature extraction algorithms. In addition, by utilizing the complementary information from mid-infrared and Raman spectroscopy, a risk assessment model for fused data was established through feature-level information fusion combined with machine learning methods. The final fused data risk assessment model achieves an accuracy of more than 90%, a sensitivity of more than 80%, and a specificity of 95%. The experimental results show that the proposed method can effectively assess the risk of cardiovascular disease.

    参考文献
    相似文献
    引证文献
引用本文

何洋,李志刚,杨蕊歌,王睿鑫,杨子龙.全血光谱融合评估心血管风险方法研究[J].电子测量与仪器学报,2025,39(3):190-198

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码