改进RT-DETR的双轮车头盔检测算法
DOI:
CSTR:
作者:
作者单位:

1.安徽建筑大学电子与信息工程学院合肥230601;2.安徽建筑大学安徽省古建筑智能感知与高维建模国际 联合研究中心合肥230601

作者简介:

通讯作者:

中图分类号:

TN957.52;TP391.4

基金项目:

中国建设教育协会教育教学科研立项课题(2023069)、2023年安徽省住房城乡建设科学技术计划(2023-YF058,2023-YF113)、安徽省高等学校科学研究重点项目(2023AH050164)、安徽省高校杰出青年科研项目(2023AH020022)资助


Improved helmet detection algorithm for two-wheeled vehicles of RT-DETR
Author:
Affiliation:

1.School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China; 2.Anhui International Joint Research Center for Intelligent Perception and High-dimensional Modeling of Ancient Buildings, Anhui Jianzhu University, Hefei 230601, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对双轮车头盔检测算法中出现的密集目标,远景小目标等复杂场景下的漏检、误检和检测准确率低的现象,以RT-DETR-r18为基础,提出一种改进的RT-DETR双轮车头盔检测算法。设计了二重跨阶段的多尺度特征融合模块(DcspBlock),将多核初始化模块(PKIBlock)融入到跨阶段模块中,在降低模型参数量的同时,有效增强了网络对远近场景中不同尺度目标的捕获能力;引入了小目标检测模块Decoderhead-p2,有效增强了模型对小型目标的检测准确性;为了缓解复杂检测场景出现的正负样本不平衡以及边界框定位不准确问题,使用改进的损失函数MPD_Focaler-IOU替换原模型的GIOU,通过设置阈值参数来改进IOU的计算方式,从而减少正负样本不平衡对模型性能的影响,引入最小垂直距离的计算方式,使得边界框在精细定位上有着更好的表现。实验表明,在TSHW数据集上,改进的RT-DETR相较于原模型,平均精度均值(mAP)mAP@0.5提升了3.6%,参数量降低了17.6%,同时保持较小的计算量,说明改进的模型可以有效提升复杂场景中对双轮车头盔检测的性能。

    Abstract:

    Aiming at the phenomena of leakage, false detection and low detection accuracy in complex scenes such as dense targets, small targets in distant view, etc., which occur in the helmet detection algorithm for two-wheeled vehicles, an improved RT-DETR helmet detection algorithm for two-wheeled vehicles is proposed on the basis of RT-DETR-r18. A dual cross-stage multi-scale feature fusion module (DcspBlock) is designed, and a multi-core initialization module (PKIBlock) is incorporated into the cross-stage module, which reduces the number of model parameters while effectively enhancing the network’s ability to capture targets of different scales in the near and far scenes; a small target detection module Decoderhead-p2 is introduced, which effectively enhances the model’s ability to detect small target detection accuracy; in order to alleviate the positive and negative sample imbalance and the inaccurate positioning of the bounding box in complex detection scenarios, the original model’s GIOU is replaced by the improved loss function MPD_Focaler-IOU, and the computation of the IOU is improved by setting the threshold parameter, so as to minimize the impact of the positive and negative sample imbalance on the model’s performance, and the computation of the minimum vertical distance is introduced to enable the bounding box to be finely localized. which makes the bounding box have better performance in fine localization. The experiments show that on the TSHW dataset, the improved RT-DETR improves the mAP@0.5 by 3.6% and reduces the number of parameters by 17.6% compared with the original model, while keeping a smaller computational volume, indicating that the improved model can effectively enhance the performance of two-wheeled vehicle helmet detection in complex scenes.

    参考文献
    相似文献
    引证文献
引用本文

孙光灵,王薪博,李艳秋.改进RT-DETR的双轮车头盔检测算法[J].电子测量与仪器学报,2025,39(4):62-73

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码