改进RT-DETR的双轮车头盔检测算法
DOI:
CSTR:
作者:
作者单位:

安徽建筑大学电子与信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(62001004);中国建设教育协会教育教学科研立项课题(2023069);2023年安徽省住房城乡建设科学技术计划项目(2023-YF058,2023-YF113);安徽省高等学校科学研究重点项目(2023AH050164)。


Improved helmet detection algorithm for two-wheeled vehicles of RT-DETR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对双轮车头盔检测算法中出现的密集目标,远景小目标等复杂场景下的漏检、误检和检测准确率低的现象,以RT-DETR-r18为基础,提出一种改进的RT-DETR双轮车头盔检测算法。首先设计了二重跨阶段的多尺度特征融合模块(DcspBlock),将多核初始化模块(PKIBlock)融入到跨阶段模块,增强主干部分对远近场景中不同尺度目标的捕获能力;其次在RT-DETR的Encoder部分引入小目标检测模块Decoderhead-p2,增强模型对小型目标检测的准确性;最后使用改进的损失函数MPD_Focaler-IOU替换原模型的GIOU,通过设置调节参数来减少正负样本不平衡对模型性能的影响,引入最小垂直距离,使其在边界框的精细定位上有着更好的表现。实验表明,改进的RT-DETR模型在TSHW数据集上mAP50和mAP50-95分别提升了3.6%和3.7%,且参数量减少了17.6%,有效提高了复杂场景中对双轮车头盔检测的性能。

    Abstract:

    Aiming at the phenomena of leakage, false detection and low detection accuracy in complex scenes such as dense objects, small objects in distant view, etc., which occur in the helmet detection algorithm of two-wheeled vehicles, an improved RT-DETR two-wheeled vehicle helmet detection algorithm is proposed on the basis of RT-DETR-r18. Firstly, a dual cross-stage multi-scale feature fusion module (DcspBlock) is designed, and a multi-core initialization module (PKIBlock) is integrated into the cross-stage module to enhance the ability of the backbone part to capture objects of different scales in the near and far scenes; secondly, a small object detection module Decoderhead-p2 is introduced into the Encoder part of RT-DETR to enhance the model"s accuracy in small object detection; finally, the original model"s GIOU is replaced by the improved loss function MPD_Focaler-IOU, and the adjustment parameters are set to reduce the impact of positive and negative sample imbalance on the model"s performance, and the minimum vertical distance is introduced to give a better performance in the fine localization of the bounding box. Experiments show that the improved RT-DETR model improves mAP50 and mAP50-95 by 3.6% and 3.7% on the TSHW dataset, respectively, and the amount of parameters is reduced by 17.6%, which effectively improves the performance of the two-wheeled vehicle helmet detection in complex scenes.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-07
  • 最后修改日期:2025-02-17
  • 录用日期:2025-02-20
  • 在线发布日期:
  • 出版日期:
文章二维码