电潜泵剩余使用寿命预测集成学习算法研究
DOI:
CSTR:
作者:
作者单位:

1.中国石油大学(北京)安全与海洋工程学院北京102249;2.应急管理部油气生产安全与应急 技术重点实验室北京102249;3.中海油研究总院有限责任公司北京100027

作者简介:

通讯作者:

中图分类号:

X937; TN06

基金项目:

国家重点研发计划(2024YFB3409301)、国家自然科学基金青年项目(72301294)、北京市科协青年人才托举工程(BYESS2023323)、中国石油大学(北京)科研启动基金(2462023BJRC016)项目资助


Prediction of remaining service life of electric submersible pump based on ensemble learning model
Author:
Affiliation:

1.School of Safety and Ocean Engineering, China University of Petroleum(Beijing), Beijing 102249, China; 2.Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, Beijing 102249, China; 3.CNOOC Research Institute Co.Ltd., Beijing 100027, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电潜泵采油是目前海上油田最主要的采油方式之一,其故障会影响油井正常生产运行并造成经济损失,因此,进行电潜泵剩余使用寿命预测与故障预防尤为重要。为保障电潜泵优质运行,根据电潜泵的数据特征,提出一种基于集成学习模型的剩余使用寿命预测方法。首先计算各时间点剩余使用寿命作为标签函数,利用随机森林算法筛选高贡献度特征参数输入模型,构建由 麻雀搜索算法-卷积神经网络(SSA-CNN)和麻雀搜索算法-长短期记忆(SSA-LSTM)两个基模型经绝对误差加权组成的集成模型。现场数据验证表明,两个基模型算法在不同情况下具备各自的优势和劣势,SSA-CNN在数据波动期更具优势,SSA-LSTM整体预测更为准确,将相同数据代入集成模型中,发现集成模型的预测误差明显小于两个基模型的预测误差兼具两者优势,在整体精度和变化阶段的评估准确率方面均有显著改善。实际算例验证表明,集成模型的预测精度相较基模型提升6.41%,较现有方法有显著提升,具备较强的鲁棒性和稳定性。

    Abstract:

    Electric submersible pump oil recovery is currently one of the most important oil recovery methods in offshore oil fields. Its failure can affect the normal production and operation of oil wells and cause economic losses. Therefore, it is particularly important to predict the remaining service life of electric submersible pumps and prevent failures. To ensure the high-quality operation of electric submersible pumps, a remaining service life prediction method based on ensemble learning model is proposed according to the data characteristics of electric submersible pumps. Firstly, the remaining service life at each time point is calculated as the label function, and the random forest algorithm is used to screen the high contribution feature parameters input model. An ensemble model consisting of SSA-CNN and SSA-LSTM base models weighted by absolute error is constructed. On site data verification shows that the two base model algorithms have their own advantages and disadvantages in different situations. SSA-CNN has more advantages during data fluctuation periods, while SSA-LSTM has more accurate overall predictions. When the same data is input into the ensemble model, it is found that the prediction error of the ensemble model is significantly smaller than that of the two base models, combining the advantages of both. There is a significant improvement in overall accuracy and evaluation accuracy during the change stage. The actual calculation verification shows that the prediction accuracy of the integrated model is 6.41% higher than that of the base model, which is significantly improved compared to existing methods and has strong robustness and stability.

    参考文献
    相似文献
    引证文献
引用本文

郑文培,周少杰,王颖君,周涛涛.电潜泵剩余使用寿命预测集成学习算法研究[J].电子测量与仪器学报,2025,39(3):13-20

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码