基于Mahony与自适CKF的多传感器姿态解算算法
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院焦作454000;2.河南省智能装备直驱技术与 控制国际联合实验室焦作454000

作者简介:

通讯作者:

中图分类号:

TN911.4

基金项目:

国家自然科学基金(U1404510)、河南省自然科学基金(232300421152)、河南省科技攻关项目(222102220076)资助


Multi-sensor attitude estimation algorithm based on Mahony filter and adaptive CKF
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China; 2.International Joint Laboratory for Intelligent Equipment Direct Drive Technology and Control, Jiaozuo 454000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在微机电系统(MEMS)惯性测量器件的应用中,研究有效的多传感器数据融合算法是提高姿态解算精度和抗干扰能力的关键技术之一。针对载体姿态解算精度低和磁力计易受磁干扰的挑战,提出了一种结合Mahony滤波和容积卡尔曼滤波的姿态解算算法。首先,利用磁力计和加速度计的信息构建误差修正量,对陀螺仪数据进行修正。同时,通过关键帧技术对受到磁干扰的数据进行主动补偿。修正后得到的初步姿态四元数被用作构建容积卡尔曼滤波的状态信息。接下来,使用磁力计和加速度计解算得到的姿态作为观测信息,并通过磁力计数据的残差信息建立自适应量测噪声协方差矩阵,以减小磁干扰对姿态解算的影响。车载实验结果表明,该算法显著提高了姿态解算的精度。与传统方法相比,横滚角、俯仰角和航向角的精度分别提升了45.3%、50.2%和32.8%。因此,所提算法在抑制陀螺仪漂移和抵抗磁干扰方面表现出良好的性能。

    Abstract:

    In the application of MEMS inertial measurement devices, the study of effective multi-sensor data fusion algorithms is one of the key technologies for improving attitude estimation accuracy and enhancing anti-interference capability. To address the challenges of low attitude estimation accuracy and the susceptibility of magnetometers to magnetic interference, this paper proposes an attitude estimation algorithm that combines Mahony filtering with the cubature Kalman filter. First, the magnetometer and accelerometer data are used to construct an error correction term to compensate for gyroscope data. Additionally, keyframe techniques are employed to actively compensate for data affected by magnetic interference. The corrected preliminary attitude quaternion is then used as the state information for constructing the Cubature Kalman Filter. Next, the attitude estimates from the magnetometer and accelerometer are used as the observation data, and an adaptive measurement noise covariance matrix is established based on the residual information from the magnetometer data, in order to mitigate the influence of magnetic interference on the attitude estimation. Vehicle-mounted experiments demonstrate that the proposed algorithm significantly improves the accuracy of attitude estimation. Compared to conventional methods, the accuracy of roll, pitch, and yaw angles is enhanced by 45.3%, 50.2%, and 32.8%, respectively. Therefore, the proposed algorithm exhibits excellent performance in suppressing gyroscope drift and resisting magnetic interference.

    参考文献
    相似文献
    引证文献
引用本文

乔美英,杜衡,韩昊天,邱运强.基于Mahony与自适CKF的多传感器姿态解算算法[J].电子测量与仪器学报,2025,39(3):136-145

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码