基于改进HLO和动态窗口的AGV动态避障路径规划算法
DOI:
CSTR:
作者:
作者单位:

安徽工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Dynamic obstacle avoidance path planning algorithm for AGVs based on improved HLO and dynamic windows
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人类学习优化算法搜索效率低、存在易陷入局部最优、无法实现动态避障等问题,提出一种融合改进人类学习优化(Human Learning Optimization Algorithms,HL)和动态窗口(Dynamic Window Algorithm,DWA)的路径规划算法。首先,利用非线性递增和递减改进概率参数提高HLO的收敛速率,并引入粒子群算法(particle swarm algorithm,PSO)更新个体知识数据库(Individual Knowledge Database,IKD)与(Social Knowledge Database,SKD)和自适应调整惯性权重系数,避免陷入局部最优;其次,在DWA算法的评价函数中加入角评价函数避免与障碍物的夹角过小、动态改变速度评价函数和角评价函数权重,以调节速度及角度;最后,仿真实验表明融合算法规划路径长度比蚁群算法路径减少4%,比混合人类学习优化与粒子群算法减少15%,其他两种算法与障碍物接触次数是本文算法的5倍,验证所提算法的可行性。

    Abstract:

    Aiming at the problems that the human learning optimization algorithm is not efficient in searching, easy to fall into local optimum, and unable to realize dynamic obstacle avoidance, a path planning algorithm integrating improved HLO, and dynamic window is proposed. Firstly, the nonlinear increasing and decreasing probability parameters are used to improve the convergence rate of HLO, and the particle swarm algorithm is introduced to update IKD and SKD and adaptively adjust the inertia weight coefficients, to avoid falling into the local optimum. Secondly, an angular evaluation function is added to the evaluation function of the DWA algorithm to avoid the small angle with the obstacle, and the weights of the speed evaluation function and angular evaluation function are dynamically changed to adjust the speed and angle. Finally, the experiments show that the planning path length of the fusion algorithm is 4% less than the ACO algorithm and 15% less than the HLOPSO algorithm, and the other two algorithms contact with the obstacles 5 times more than the algorithm in this paper, which verifies the feasibility of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-30
  • 最后修改日期:2024-12-20
  • 录用日期:2024-12-24
  • 在线发布日期:
  • 出版日期:
文章二维码