基于K-SVD字典学习的超声流量计回波信号处理方法研究
DOI:
CSTR:
作者:
作者单位:

东华理工大学机械与电子工程学院南昌330013

作者简介:

通讯作者:

中图分类号:

TN98;TH701

基金项目:

国家自然科学基金(61663001)、江西省科技厅重点研发计划(20212BBE53033)项目资助


Research on ultrasonic flowmeter echo signal processing based on K-SVD dictionary learning
Author:
Affiliation:

School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对时差法气体超声流量计回波信号易受电路噪声、声学噪声以及环境噪声等外界不可避免的影响,导致回波信号的起点段信号扭曲、信噪比低,而难以精确确定回波信号到达时间点的问题,提出基于K-SVD字典学习降噪的回波信号到达时间点的精确定位方法,从而提高超声流量计的检测准确度。通过OMP算法将提取到的多组回波信号数据构造成的矩阵进行稀疏表示,再使用SVD完成字典的迭代更新,并通过控制变量法对字典大小和稀疏度两个参数进行优化,训练得到能够自适应提取回波信号特征的最佳字典学习模型,形成完备字典,从而重构回波信号,达到消除信号起始时间段因噪声干扰而导致波形扭曲的目的。在临界流文丘利喷嘴法气体流量标准装置上进行的标定实验结果表明,未处理的回波信号直接使用阈值法定位到达时间点后计算得到的最终流量误差较大,而使用基于K-SVD字典学习降噪处理回波信号后能有效提高定位到达时间点的准确度,从而得到更加准确的流量信息,其中流量的高区示值误差由1.32%降至1.02%,重复度由0.154%降至0.054%;流量的低区示值误差由3.69%降至1.46%,重复度由1.152%降至0.126%,优化后的测量结果达到国家1.0级精度指标要求。

    Abstract:

    Addressing the difficulty in accurately determining the arrival time of echo signals in time-difference ultrasonic gas flowmeters due to inevitable external influences such as circuit noise, acoustic noise, and environmental noise, which distort the initial segment of echo signals and result in a low signal-to-noise ratio, a precise positioning method for echo signal arrival time based on K-SVD dictionary learning for noise reduction is proposed to enhance the detection accuracy of ultrasonic flowmeters. The method involves using the OMP algorithm to perform sparse representation on the matrix constructed from multiple sets of extracted echo signal data, followed by iterative updating of the dictionary using SVD. The two parameters of dictionary size and sparsity are optimized through the control variable method to train an optimal dictionary learning model capable of adaptively extracting echo signal features, forming a complete dictionary, and reconstructing the echo signal to eliminate waveform distortion caused by noise interference in the initial signal segment. Calibration experiments conducted on a critical flow Venturi nozzle-based gas flow standard device show that directly using a threshold method to locate the arrival time of unprocessed echo signals results in significant errors in the final flow calculation. However, applying K-SVD dictionary learning-based noise reduction to process echo signals can effectively improve the accuracy of locating the arrival time, leading to more accurate flow information. Specifically, the indication error in the high flow range is reduced from 1.32% to 1.02%, and the repeatability is improved from 0.154% to 0.054%. In the low flow range, the indication error is decreased from 3.69% to 1.46%, and the repeatability is enhanced from 1.152% to 0.126%. The optimized measurement results meet the national accuracy standard of Grade 1.0.

    参考文献
    相似文献
    引证文献
引用本文

潘宁致,李跃忠,陈佳怡.基于K-SVD字典学习的超声流量计回波信号处理方法研究[J].电子测量与仪器学报,2025,39(1):195-202

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码