基于波簇区间的挥发性有机气体红外光谱光谱波长选择算法
DOI:
CSTR:
作者:
作者单位:

1.重庆工商大学人工智能学院重庆400067;2.重庆工商大学检测控制集成系统重庆市市级工程实验室重庆400067

作者简介:

通讯作者:

中图分类号:

TP212.2;TN911.72

基金项目:

国家自然科学基金(12305041)、重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1370)、重庆市教委科学技术研究项目(KJZD-K202200803)项目资助


Wavelength selection algorithm for infrared spectra of volatile organic gases based on wave-cluster interval
Author:
Affiliation:

1.School of Artificial Intelligence,Chongqing Technology and Business University, Chongqing 400067, China; 2.Chongqing Key Laboratory of Intelligent Perception and Block Chain Technology, Chongqing Technology and Business University, Chongqing 400067, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以特征波长点簇类和吸收峰区间筛选串联选择模式,提出了一种基于波簇区间的波长选择算法用于挥发性有机气体红外光谱波长选择。首先进行簇类聚集,在保留足够特征吸收峰特性同时避免算法波长区间机械划分或随机不确定性,接着设计改进移动窗口方式对同一簇类中的波长点进行再次筛选,保留最能代表光谱特征的波长区间用于后期各种模型预测。用苯乙烯、对二甲苯和邻二甲苯近红外光谱数据在偏最小二乘法、偏最小二乘、岭回归、支持向量机4种模型上进行了验证分析,结果表明在不影响模型精度前提下,数据集可缩小至原来的43.71%~36.35%;以3种气体各2种浓度全排列组合混合气体为数据集,通过3种不同结构卷积神经网络(CNN)模型上光谱波形选择前后实验对比,在保证预测精度的同时验证了算法在降低机器学习模型复杂度上的有效性,波长选择前后在3种CNN预测模型上运行效率提升90%。

    Abstract:

    A novel wavelength selection algorithm, based on wave cluster interval, for infrared spectroscopy in the detection of volatile organic gases is presented. The algorithm employs a series selection mode, utilizing characteristic wavelength point cluster classification and absorption peak interval screening. To begin with, cluster analysis is conducted to retain prominent absorption peak features while minimizing the potential for algorithmic over splitting or random uncertainty in wavelength intervals. Subsequently, an improved moving window method is devised, and a greedy algorithm is employed to re-screen wavelength points within the same cluster class. This process ensures the retention of the optimal wavelength range, crucial for representing spectral characteristics and facilitating subsequent model predictions. Experimental validation was conducted using infrared spectral data of styrene, para-xylene, and o-xylene, employing four models: partial least squares, ridge regression, support vector machine. The results demonstrate that, while maintaining model accuracy, the dataset can be reduced to 43.71%~36.35% of its original size. Additionally, utilizing a dataset comprising three gases (two concentrations each), as well as fully arranged and combined mixed gases, we conducted comparative experiments on three different CNN structures. The effectiveness of the proposed algorithm in reducing machine learning model complexity while ensuring prediction accuracy was validated through experimental comparisons before and after spectral waveform selection, with the CNN prediction models demonstrating a 90% increase in operational efficiency post-wavelength selection.

    参考文献
    相似文献
    引证文献
引用本文

严玥,许世豪,何海星月,周雪.基于波簇区间的挥发性有机气体红外光谱光谱波长选择算法[J].电子测量与仪器学报,2025,39(3):34-43

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码