基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识
DOI:
CSTR:
作者:
作者单位:

南京理工大学瞬态物理全国重点实验室南京210094

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

国家自然科学基金(62203191)项目资助


Aerodynamic parameter identification of projectiles optimized by improved sparrow search algorithm based kernel extreme learning machine
Author:
Affiliation:

National Key Lab of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。

    Abstract:

    The aerodynamic parameters of a projectile directly affect its flight trajectory, which in turn determines the missile’s design and performance evaluation. Due to the complex aerodynamic environment and the interactions between aerodynamic parameters during highspeed flight, accurately identifying these parameters is a challenging problem. To address this, this paper proposes a combined model using the sparrow search algorithm and kernel extreme learning machine to identify the projectile’s aerodynamic parameters. In order to fully exploit the performance of the SSA and improve identification accuracy, improvements are made to the initialization strategy, convergence factor, and position update strategy of the SSA. The effectiveness of these improvements is validated using the CEC2022 benchmark functions for the improved sparrow search algorithm. Furthermore, the ISSA is employed to optimize the kernel parameters and regularization coefficients of the KELM, leading to the proposed ISSA-KELM identification model. The results show that using the basic extreme learning machine algorithm yields the lowest identification accuracy and fails to capture the nonlinear characteristics of the aerodynamic parameters in certain regions. By introducing a kernel function into the ELM, the KELM method improves identification accuracy by 1 to 4 orders of magnitude. While the KELM and SSA-KELM models still exhibit some discrepancies from the true values in nonlinear regions, the ISSA-KELM model provides the most accurate results, improving accuracy by approximately 4 to 5 orders of magnitude compared to the basic ELM algorithm. This research offers reliable technical support for precise flight trajectory prediction and missile performance optimization.

    参考文献
    相似文献
    引证文献
引用本文

高展鹏,易文俊.基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识[J].电子测量与仪器学报,2025,39(2):72-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-23
  • 出版日期:
文章二维码