适应遥感船舶图像的轻量化旋转小目标检测网络
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

TP391;TN919. 8

基金项目:

国家自然科学基金资助项目


Lightweight rotating small target detection network adapted to remote sensing ship images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感图像船舶目标小、背景复杂、姿态变化大,传统船舶检测算法为提升精度,往往忽视了模型规模和实时性,难以应用到资源受限的设备上。针对上述问题,提出一种适应遥感船舶图像的轻量化旋转小目标检测网络RFDNet。考虑到遥感船舶图像拍摄距离远而导致图片中目标较小且图像中包含丰富的背景信息,设计注意力卷积融合双分支网络ACFNet,通过对局部特征信息与全局空间感知信息的充分提取,提高船舶小目标检测精度;为避免船舶目标姿态各异而导致检测时的精度下降,利用旋转目标方向信息引入旋转边界框损失函数,获得更准确的边界框回归损失,提升任意方向旋转船舶目标的检测性能;针对为提高模型精度而带来的参数量增加问题,在特征融合部分引入轻量级卷积,将卷积、深度可分离卷积以及通道混洗相结合,减少模型的参数量。通过对比实验和消融实验证明,RFDNet在HRSC2016数据集和DOTA数据集上的mAP分别达到了97.63%和81.63%,模型参数降到了2.99M,在有效提升检测精度的同时实现了模型的轻量化设计,为遥感船舶目标检测算法在资源受限设备上的应用提供了新思路。

    Abstract:

    Remote sensing images of ships is characterized by small target sizes, complex backgrounds, and significant attitude changes. Traditional ship detection algorithms focus on improving detection accuracy while neglecting model size and real-time performance, thereby limiting their practical application on resource-constrained devices. A lightweight Rotated Fusion Detection Network RFDNet adapted to remote sensing ship images is proposed to address the above problems. Considering that the remote sensing ship images are taken at a long distance, resulting in small target sizes and rich background information in the images, ACFNet is designed to improve the detection accuracy of small ship targets by fully extracting local feature information and global spatial sensing information. To avoid accuracy degradation when detecting ship targets with different attitudes, a rotating bounding box loss function is introduced, which utilizes the orientation information of rotating targets for obtaining a more accurate bounding box regression loss, thereby improving the detection performance of ship targets rotating in any direction; for the problem of increasing parameter counts brought about by increasing the accuracy of the model, a lightweight convolution is introduced into the feature fusion part, which combines the convolution, the depth separable convolution, and the channel blending to reduce the number of parameters in the model. Through comparative and ablation experiments, it has been demonstrated that RFDNet achieved mAPs of 97.63% and 81.63% on the HRSC2016 and DOTA datasets, respectively, while reducing the model parameters to 2.99M. This not only effectively improved detection accuracy but also realized a lightweight model design, providing a new insight for the application of remote sensing ship detection algorithms to resource-constrained devices.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-17
  • 最后修改日期:2025-02-17
  • 录用日期:2025-02-20
  • 在线发布日期:
  • 出版日期:
文章二维码