计及时空特性的变压器油中溶解气体预测模型
DOI:
CSTR:
作者:
作者单位:

武汉大学电气与自动化学院

作者简介:

通讯作者:

中图分类号:

TM76

基金项目:

国家重点研发计划“储能与智能电网技术”专项“海上风电并网系统远程监测与故障诊断技术”项目(2023YFB2406900)资助项目


Prediction Model for Dissolved Gases in Oil Considering Spatiotemporal Characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度。因此本文首先采用基于密度的噪声应用空间聚类(DBSCAN)对油中溶解气体数据清洗,然后提出自适应非线性权重和莱维飞行策略改进鲸鱼优化算法,提高其局部及全局寻优能力,利用改进的鲸鱼优化算法优化DBSCAN中超参数提高数据清洗效果,最后分析气体成分间复杂关联关系,构建时空耦合卷积神经网络模型挖掘气体的时空特征,实现油中溶解气体时间序列预测。通过某电站变压器油中溶解气体实测数据验证,结果表明数据清洗后预测拟合优度(R2)提高0.727,在6种特征气体预测中R2都在0.9以上。相较于其他模型,所提模型在特征气体预测中均取得了最佳的预测结果,充分证明所提模型的有效性。

    Abstract:

    In complex operating environments of power transformers, the dissolved gases in transformers have non-stationary and nonlinear characteristics. The prediction models of the neural network are difficult to meet high accuracy and reliability requirements which only consider the temporal features. During the data collection process, it is inevitable to exist outliers, which leads to a decrease in data quality and subsequently affects the accuracy of the prediction model. Firstly, density-based spatial clustering of applications with noise (DBSCAN) is proposed to clean the time-series data of dissolved gases in oil in this paper. Then, the adaptive nonlinear weight and Levy flight strategy are proposed to improve the whale optimization algorithm, enhancing its local and global optimization capabilities. The improved whale optimization algorithm is used to optimize hyperparameters in DBSCAN which improves the efficiency of data cleaning. Finally, the complex correlation between gases is analyzed, and a spatiotemporal coupled convolutional neural network model is constructed to mine the spatiotemporal characteristics of gases and achieve gas prediction. Verified by the dissolved gases in the oil of the power station, the results show that the R-squared increased by 0.727 after data cleaning. The R-squared is above 0.9 in all six characteristic gas predictions. Compared with other models, this prediction model proposed in this paper has achieved the best prediction results in feature gas prediction, which demonstrates the effectiveness of the prediction models.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2025-01-15
  • 录用日期:2025-01-16
  • 在线发布日期:
  • 出版日期:
文章二维码