用于红外与微光图像融合的目标差分注意力和Transformer算法
DOI:
CSTR:
作者:
作者单位:

长春理工大学电子信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重大仪器专项项目(62127813)


Target differential attention and Transformer algorithm for infrared and low-light image fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前红外与微光图像融合算法中易出现光谱信息缺失?目标边缘模糊等问题,提出了用于红外与微光图像融合的目标差分注意力和Transformer的融合算法?首先,利用残差结构构造一种微光重构网络,并利用VGG-16构建感知损失,最大程度保留微光图像中的背景纹理信息和亮度信息;而后,将CNN与Transformer结合构建特征提取网络,提取图像的完整特征;同时,在目标差分注意力模块中,对红外图像和微光图像进行差分运算和特征提取,得到的红外差分图像通过通道注意力机制对目标特征进行增强,再与CNN特征提取网络的输出特征图进行逐元素相加,增强红外目标特征;然后,通过梯度保留模块捕捉特征的高频信息和低频信息,提升纹理细节的保留度;最后,利用特征重建网络重构出融合图像?实验结果表明,融合结果不仅更符合人眼视觉系统,在客观评价指标中MI和VIF分别比其他融合方法提升了44.6%和21.2%。

    Abstract:

    Aiming at the problems of spectral information missing and target edge blurring in current infrared and low light level image fusion algorithms, a target difference attention algorithm and Transformer fusion algorithm for infrared and low light level image fusion are proposed. Firstly, a low-light level reconstruction network is constructed by using residual structure, and the perception loss is constructed by using VGG-16 to preserve the background texture and brightness information in the low-light level image to the maximum extent. Then, the feature extraction network is constructed by combining CNN and Transformer to extract the complete features of the image. At the same time, in the target differential attention module, the difference operation and feature extraction are carried out on the infrared image and low-light image, and the obtained infrared differential image is enhanced by the channel attention mechanism. Then the output feature map of CNN feature extraction network is added element by element to enhance the infrared target feature. Then, the high frequency and low frequency information of features are captured by gradient retention module to improve the retention of texture details. Finally, the feature reconstruction network is used to reconstruct the fused image. The experimental results show that the fusion results are not only more consistent with the human visual system, but also the objective evaluation indexes of MI and VIF are increased by 44.6% and 21.2%, respectively, compared with other fusion methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-13
  • 最后修改日期:2025-01-25
  • 录用日期:2025-02-05
  • 在线发布日期:
  • 出版日期:
文章二维码