基于SimCLR-CIR-SC自主分类的时间卷积神经网络室内UWB定位方法
DOI:
CSTR:
作者:
作者单位:

重庆交通大学信息科学与工程学院重庆400074

作者简介:

通讯作者:

中图分类号:

TN966

基金项目:

重庆市自然科学基金(CSTB2024NSCQ-MSX0275)项目资助


Temporal convolutional neural network indoor UWB positioning method based on SimCLR-CIR-SC autonomous classification
Author:
Affiliation:

School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    超宽带(UWB)技术因其高时间分辨率和强穿透能力,在室内定位领域受到广泛关注。然而,传统的UWB非视距识别与补偿定位方法难以准确描述复杂环境下的信道状态,导致定位准确度和精度不足。针对信道脉冲响应(CIR)数据的特点,借鉴对比学习的SimCLR框架进行特征提取,结合谱聚类(SC)原理提出了一种基于SimCLR-CIR-SC的自主分类方法。依据自主分类结果,设计了一种基于注意力机制的时间卷积神经网络(TCN-A)模型用于确定信道状态类别。进一步针对每一类信道状态类别,设计了一种TCN-A模型用于测距误差的预测。该误差用于补偿测量距离并衡量测距的权重,结合加权最小二乘(WLS)算法实现了未知节点的定位。实验结果表明,与现有3种聚类方法相比,所提出的SimCLR-CIR-SC方法实现了对信道状态的自主有效分类和标注。TCN-A分类模型准确度达到98.16%,优于现有的5种分类模型。此外,所提定位方法在3个锚点的平均误差达到0.57 m,相较于现有4种方法定位精度最少提升了31.3%,且随着锚点数量增加定位精度显著提高。

    Abstract:

    Ultra-wide band (UWB) technology has garnered significant attention in the field of indoor positioning due to its high temporal resolution and strong penetration capability. However, traditional UWB positioning methods for non-line-of-sight (NLOS) identification and compensation often fail to accurately characterize channel states in complex environments, leading to insufficient positioning accuracy and precision. This study proposes an autonomous classification approach, termed SimCLR-CIR-SC, which leverages the SimCLR framework for feature extraction from channel impulse response (CIR) data, and combined with the principles of spectral clustering (SC). Based on the autonomous classification results, we designed a time convolutional neural network with attention mechanisms (TCN-A) model to determine channel state categories. For each identified channel state category, a customized TCN-A model is then employed to predict ranging errors. These errors are used to compensate measuring distances and calibrate ranging weights, integrating with the weighted least squares (WLS) algorithm to locate unknown nodes. Experimental results demonstrate that the proposed SimCLR-CIR-SC method effectively and autonomously classifies and labels channel states, outperforming three existing clustering methods. The TCN-A classification model achieved an accuracy of 98.16%, surpassing five existing classification models. Furthermore, the proposed positioning method achieved an average error of 0.57 meters with three anchors, enhancing the positioning accuracy by at least 31.3% compared to four existing methods, and the positioning accuracy improves substantially as the number of anchors increases.

    参考文献
    相似文献
    引证文献
引用本文

吴仕勋,王潇,蓝章礼,徐凯,张淼,靳双.基于SimCLR-CIR-SC自主分类的时间卷积神经网络室内UWB定位方法[J].电子测量与仪器学报,2025,39(3):65-76

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码