基于二维熵与低维度描述符的双目视觉测量
DOI:
CSTR:
作者:
作者单位:

安徽工业大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);安徽高校自然科学研究重点资助项目;特种重载机器人安徽省重点实验室开放基金资助项目


Binocular vision measurement based on two-dimensional entropy and low-dimensional descriptors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统算法特征点匹配时间长、误匹配率高及双目视觉测量精度低等问题,提出一种基于二维熵与低维度描述符的双目视觉测量方法。首先利用图像二维熵对特征点进行筛选,过滤部分无用特征点,保证特征点稳定性;然后,构建一种低维度而具有多梯度方向的SIFT特征描述符,同时采用马氏距离作为相似性度量标准进行特征点匹配,并用随机采样一致性RANSAC(random sample consensus)算法消除误匹配;最后用二元二次曲面拟合获取特征点的亚像素坐标,通过三角测量得到其空间三维坐标并计算被测物体相关尺寸。以连铸坯模型为测量对象,实验结果表明:该算法测量的平均相对误差为0.41%,较SIFT算法和ORB算法分别低1.45%和0.72%,满足测量精度要求;特征点匹配正确率较SIFT、BRISK、ORB算法分别提高20.94%、18.19%和11.38%,特征点匹配用时较SIFT降低57.48%,验证了该算法的精确性与高效性。

    Abstract:

    Aiming at the problems of long feature point matching time, high false matching rate and low binocular vision measurement accuracy of traditional algorithms, a binocular vision measurement method based on two-dimensional entropy and low-dimensional descriptor is proposed. Firstly, the two-dimensional entropy of the image is used to screen the feature points, filter some useless feature points, and ensure the stability of the feature points; Then, a low-dimensional SIFT feature descriptor with multi-gradient directions is constructed, and the Mahalanobis distance is used as a similarity measure to match the feature points. The random sample consistency (RANSAC) algorithm is used to eliminate false matches; Finally, the sub-pixel coordinates of the feature points are obtained by binary quadratic surface fitting, and the spatial 3D coordinates are obtained by triangulation to calculate the relevant dimensions of the measured object. Taking the continuous casting slab model as the measurement object, the experimental results show that: the average relative error of the measurement is 0.41%, which is 1.45% and 0.72% lower than that of the SIFT algorithm and ORB algorithm, respectively, and meets the requirements of the measurement accuracy; The correct rate of the feature point matching improves by 20.94%, 18.19% and 11.38% compared with that of the SIFT, BRISK, and ORB algorithms, and the time taken for feature point matching reduces by 57.48% compared with SIFT, which verifies the accuracy and efficiency of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-30
  • 最后修改日期:2025-01-19
  • 录用日期:2025-01-23
  • 在线发布日期:
  • 出版日期:
文章二维码