基于知识蒸馏的空间通道双自编码器无监督异常检测
DOI:
CSTR:
作者:
作者单位:

江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金


Knowledge Distillation Based Spatial Channel Dual Autoencoders for Unsupervised Anomaly Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在工业检测场景下,按照是否引入正常样本中不存在的异常,可以将异常检测问题分为结构异常检测和逻辑异常检测两类,逻辑异常检测对网络的全局理解能力提出了更高的要求?针对现有无监督异常检测模型在结构异常上已有较好的检测精度,但无法适应逻辑异常检测需求的问题,提出一种包含空间聚合模块和通道聚合模块的双自编码器结构,主要由三部分组成:首先设计了并行空空间通道双自编码器架构,从空间和通道两个方向得到包含全局信息的特征向量,提升网络的长程依赖关系;其次设计一个选择性融合模块,融合双自编码器信息,放大包含重要信息的特征,以进一步提高对逻辑异常的表达能力;最后提出在自编码器与学生网络的损失函数中加入余弦损失,避免网络对单个像素差异过于敏感,从而关注于全局差异?在MVTec LOCO AD数据集上进行实验,逻辑异常检测精度达到89.4%,结构异常检测精度达到94.9%,平均检测精度92.1%,超越了基线方法和其他无监督缺陷检测方法,验证了方法的有效性和优越性。

    Abstract:

    In industrial detection scenario, according to whether anomalies that do not exist in normal samples are introduced, anomaly detection problems can be divided into two categories: structural anomaly detection and logical anomaly detection. Logical anomaly detection places higher demands on the global understanding ability of the network. Faced with the problem that the existing unsupervised anomaly detection model has a good detection accuracy on structural anomalies, but cannot meet the requirements of logical anomaly detection, a dual autoencoder structure consisting of spatial reunion module and channel reunion module is proposed. Our method consists of three components: Initially, the parallel space channel dual autoencoder architecture is introduced, by obtaining feature vectors containing global information from spatial and channel directions, the long-range dependencies of the network is improved. Secondly a selective fusion module is designed to fuse the information of the dual autoencoder and amplify features containing important information to further improve the ability to express logical anomalies. Lastly cosine loss is proposed to the loss function between autoencoder and student network to avoid the network being sensitive to individual pixel differences, so as to focus on global differences. We conducted experiments on MVTec LOCO AD dataset, and achieved 89.4% in logical anomaly detection accuracy, 94.9% in structural anomaly detection accuracy, and 92.1% in average detection accuracy, surpassing the baseline method and other unsupervised defect detection methods, verifying the effectiveness and superiority of the method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-29
  • 最后修改日期:2025-01-16
  • 录用日期:2025-01-21
  • 在线发布日期:
  • 出版日期:
文章二维码