面向变电站嵌入式设备的指针式仪表识别方法
DOI:
CSTR:
作者:
作者单位:

1.长安大学能源与电气工程学院西安710064;2.长安大学电子与控制工程学院西安710064; 3.中陕核工业集团陕西二一○研究所有限公司咸阳712000

作者简介:

通讯作者:

中图分类号:

TN98;TH865

基金项目:

陕西省秦创原“科学家+工程师”队伍建设项目(2024QCY-KXJ-161)、西安市重点产业链项目(23ZDCYJSGG0013-2023)、咸阳市重点研发计划(L2024-ZDYF-ZDYF-GY-0004)项目资助


Pointer meter identification method for embedded devices in substations
Author:
Affiliation:

1.School of Energy and Electrical Engineering, Chang′an University, Xi′an 710064, China; 2.School of Electronic and Control Engineering, Chang′an University, Xi′an 710064, China; 3.Shaanxi 210 Research Institute Co.,Ltd of SINO Shaanxi Nuclear Industry Group, Xianyang 712000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变电站嵌入式设备在识别指针式仪表时常面临实时性差以及小目标和密集目标场景漏检的问题,提出了一种基于YOLOv5s-BCGS的变电站指针式仪表识别模型。该模型以YOLOv5s为基础网络,首先在其网络颈部引入协调注意力机制,并将路径聚合网络替换为加权双向特征金字塔网络,以更好地融合特征图中的位置和细节信息,从而增强模型对目标位置和尺寸的敏感性。其次,原网络中的传统卷积被轻量化的幽灵卷积替代,既加快了推理速度,又减小了模型体积。最后,将原网络中的CIoU损失函数替换为SIoU损失函数,提高了模型训练速度并改善了远距离小目标的推理精度。实验结果表明,改进后的模型在自制变电站指针仪表数据集上的表现优于YOLOv5s,mAP0.5提高了2.2%,mAP0.75提高了3.8%,mAP0.5~0.95提高了6.7%,同时模型体积减少了34.07%。与常用的Faster R-CNN、YOLOv4-tiny、YOLOv7-tiny和YOLOv8n等模型相比,本模型在精度和速度上均具有明显优势,展现了良好的泛化能力和鲁棒性,且模型体积仅为18.0 MB,实现了轻量化部署。在PC和Jetson Xavier NX开发板上的推理速度分别为154.7 FPS和18.7 FPS,能够满足嵌入式设备在变电站指针仪表巡检中的实际工程需求。

    Abstract:

    Embedded devices in substations frequently encounter challenges related to real-time performance and detection accuracy, especially in scenarios involving small targets and densely arranged pointer instruments. This paper proposes an enhanced substation pointer instrument recognition model based on YOLOv5s-BCGS, which improves detection accuracy and efficiency. The model employs YOLOv5s as its backbone network, incorporating a coordinate attention mechanism at the neck to enhance spatial feature extraction. Additionally, the original path aggregation network is replaced with a weighted bidirectional feature pyramid network to better integrate positional and detailed information from the feature maps. This modification increases the model’s sensitivity to target location and size, particularly in complex scenarios. To accelerate inference speed and reduce model size, we substitute traditional convolutions with lightweight Ghost Convolutions. Furthermore, the conventional Complete Intersection over Union loss function is replaced by the SCYLLA-Intersection over Union loss function, which improves both the training speed and the inference accuracy for small targets at greater distances. Experimental results show that the proposed model outperforms YOLOv5s on a custombuilt substation pointer instrument dataset, with mAP0.5 increasing by 2.2%, mAP0.75 improving by 3.8%, and mAP0.5~0.95 rising by 6.7%. Additionally, the model size is reduced by 34.07%. When compared to other widely used models such as Faster R-CNN, YOLOv4-tiny, YOLOv7-tiny, and YOLOv8n, our model shows significant improvements in both accuracy and speed. The model, with a size of only 18.0 MB, demonstrates strong generalization and robustness, making it well-suited for lightweight deployment. Inference speeds on a PC and the Jetson Xavier NX development board reach 154.7 FPS and 18.7 FPS, respectively, meeting the performance requirements for embedded devices used in substation pointer instrument inspections.

    参考文献
    相似文献
    引证文献
引用本文

胡欣,刘瑞峰,肖剑,段承志,程鸿亮,罗诗伟.面向变电站嵌入式设备的指针式仪表识别方法[J].电子测量与仪器学报,2025,39(1):253-263

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码