面向工业环境气体泄漏检测的多模态融合模型
DOI:
CSTR:
作者:
作者单位:

1.云南省计算机技术应用计算机重点实验室昆明650500;2.中国铜业有限公司昆明650051; 3.昆明信息港传媒有限责任公司昆明650032

作者简介:

通讯作者:

中图分类号:

TP274;TN919.5

基金项目:

云南省重大科技专项计划项目(202202AD080006)资助


Multi-modal fusion model for industry environment gas leakage detection
Author:
Affiliation:

1.Yunnan Province Key Laboratory of Computer Technology Application, Kunming 650500, China; 2.China Copper Corporation Limited, Kunming 650051, China; 3.Kunming Information Hub Media Co., Ltd., Kunming 650032, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在有色金属冶金等重工业环境中,危险气体泄漏的检测对保障工作人员安全和维持生产稳定至关重要。传统单模态的检测方法无法有效应对复杂工业环境中的干扰,在噪声环境下面临准确性降低的问题。针对上述问题,提出了一种面向工业环境下的多模态气体泄漏检测模型,该模型融合了烟雾传感器数据和红外图像数据,利用各数据源的互补优势,提高检测的准确性和鲁棒性。首先针对不同模态数据的特性,使用门控多层感知机(gMLP)捕捉传感器数据中的复杂模式;同时采用 Swin-Transformer 提取红外图像中的局部特征和全局特征。之后,利用基于多头注意力的融合策略,有效融合不同模态数据之间的潜在表示并获得有害气体的识别结果。通过在正常环境下和噪声环境下的多模态气体数据集上进行实验,该模型取得了 97.92% 的识别准确率,结果表明,相较于单一模态,多模态的方法可以有效提升检测的准确性和鲁棒性,提升了在复杂工业场景下气体泄漏检测的性能。

    Abstract:

    In heavy industries such as non-ferrous metal metallurgy, the detection of hazardous gas leaks is crucial for ensuring employee safety and maintaining stable production. Traditional single-modal detection methods often struggle with reduced accuracy in complex industrial environments due to their limited ability to handle disturbances, particularly in noisy conditions. To address these challenges, this paper introduces a multimodal gas leak detection model designed for industrial environments. This model integrates smoke sensor data and infrared image data, leveraging the complementary strengths of each data source to enhance detection accuracy and robustness. Initially, the gMLP architecture is utilized to capture complex patterns in sensor data; concurrently, the Swin-Transformer is employed to extract local and global features from infrared images. Subsequently, a fusion strategy based on multi-head attention effectively combines the latent representations of different modal data to achieve hazardous gas detection. Experiments conducted on multimodal gas datasets in both normal and noisy environments demonstrate that the model achieves a detection accuracy of 97.92%. The results indicate that, compared to single-modal methods, the multimodal approach significantly improves detection accuracy and robustness, enhancing performance in complex industrial gas leak detection scenarios.

    参考文献
    相似文献
    引证文献
引用本文

王泓森,王建国,杨建东,冯勇.面向工业环境气体泄漏检测的多模态融合模型[J].电子测量与仪器学报,2025,39(3):217-225

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码