基于深度聚类学习的无监督行人重识别
DOI:
CSTR:
作者:
作者单位:

沈阳工业大学

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

辽宁省科技厅应用基础研究计划项目(101300243);辽宁省教育厅科学研究经费面上项目(LJKZ0139)


Unsupervised Person Re-Identification Based on Deep Clustering Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无监督行人重识别是一种在没有任何标签的情况下,通过特征提取和聚类算法对行人进行识别和匹配的计算机视觉方法。针对当前无监督行人重识别方法普遍存在的特征提取不足、聚类不准确、计算复杂度高以及模型缺乏鲁棒性等问题,本文提出了一种基于深度聚类学习的无监督行人重识别方法。首先,研究了结合广义均值池化(GeM)的IBN-Net并作为特征提取网络,使得提取出的行人特征更具判别性;其次,针对聚类算法对于超参数较为敏感的问题,提出通过有序点识别聚类结构(OPTICS)的算法辅助DBSCAN聚类算法选取超参数,进一步降低了DBSCAN对超参数的敏感度;此外,为了更加充分利用训练集的所有数据,将离群值也视为单独的聚类参与到记忆字典的初始化与更新过程中;最后,针对记忆字典更新过程中各个聚类更新速率不一致的问题,提出了聚类级别的记忆字典,消除了聚类更新速率不一致的问题。实验结果验证了研究工作的有效性,提出的方法在无监督行人重识别任务中的精度与准确度均有明显的提升。

    Abstract:

    Unsupervised person re-identification is a computer vision method that identifies and matches pedestrians without any labeled data, utilizing feature extraction and clustering algorithms. To address common issues in current unsupervised person re-identification methods, such as insufficient feature extraction, inaccurate clustering, high computational complexity and lack of model robustness, this paper proposes a deep clustering learning-based approach for unsupervised person re-identification. First, we investigate the use of IBN-Net combined with Generalized Mean Pooling (GEM) as the feature extraction network, which enhances the discriminative power of the extracted features. Second, to mitigate the sensitivity of clustering algorithms to hyperparameters, we introduce the OPTICS algorithm to assist DBSCAN in selecting hyperparameters, thus reducing DBSCAN’s dependency on them. Additionally, to fully utilize all the data in the training set, outliers are treated as separate clusters and included in the initialization and updating process of the memory dictionary. Finally, to address the inconsistency in update rates among clusters in the memory dictionary, we propose a cluster-level memory dictionary that eliminates this issue. Experimental results validate the effectiveness of our approach, demonstrating significant improvements in both precision and accuracy in unsupervised person re-identification tasks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-22
  • 最后修改日期:2025-01-09
  • 录用日期:2025-01-16
  • 在线发布日期:
  • 出版日期:
文章二维码