应用于齿轮箱故障诊断的小样本图像生成方法
DOI:
CSTR:
作者:
作者单位:

1.中国矿业大学(北京)人工智能学院北京100083; 2.安徽省工业互联网智能应用与安全工程研究中心马鞍山243023

作者简介:

通讯作者:

中图分类号:

TH132;TN919.8

基金项目:

中央高校基本科研业务费(2024ZKPYZN01)、安徽省工业互联网智能应用与安全工程研究中心开放基金(IASII24-09)、北京市高等教育学会(MS2022314)、煤炭行业高等教育国家研究项目(2021MXJG44)、教育部产学合作协同育人项目(202102210008)资助


Small sample image generation method applied to gearbox fault diagnosis
Author:
Affiliation:

1.School of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100083, China; 2.Anhui Industrial Internet Intelligence Application and Security Engineering Research Center, Ma′anshan 243023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行星齿轮箱是一种广泛应用于工业领域的关键传动装置,其在复杂工况和长期负荷下易出现故障。传统的故障诊断方法依赖于专家经验和昂贵设备,存在数据稀缺和诊断效率低的问题。针对这一挑战,近年来生成对抗网络(GAN)的发展为图像生成和数据增强提供了新的解决方案。然而,现有GAN模型在处理小样本数据时,常出现语义错位和伪影问题,限制了其在智能故障诊断领域的应用潜力。为此,提出了一种基于多尺度渐进式特征融合的生成对抗网络(MSA-PF-GAN)模型,通过引入渐进式解码器结构与多尺度注意力模块,有效提升小样本条件下的图像生成质量及故障诊断精度。实验基于两个独立的行星齿轮箱故障数据集进行验证,结果显示,该方法显著降低了生成图像的FID分数,提升了诊断准确率(分别提高35%和20%)。在多种评价指标上,MSA-PF-GAN均优于其他主流方法。进一步分析表明,该模型通过渐进式特征融合和多尺度注意机制,不仅在生成图像的多样性和真实感上表现优异,还能有效增强对复杂故障特征的捕捉能力。因此,该技术在行星齿轮箱故障诊断领域具有有效的应用潜力和实际价值。

    Abstract:

    Planetary gearboxes are widely used as essential transmission devices in industrial applications, yet they are prone to failures under complex operating conditions and prolonged loads. Traditional fault diagnosis methods heavily rely on expert knowledge and expensive equipment, facing challenges such as data scarcity and low diagnostic efficiency. To address these limitations, the development of generative adversarial networks (GANs) has provided innovative solutions for image generation and data augmentation in recent years. However, existing GAN models often encounter issues such as semantic misalignment and artifacts when processing small-sample datasets, limiting their potential in intelligent fault diagnosis. In this context, this paper proposes a multi-scale attention and progressive feature fusion GAN (MSA-PF-GAN) model, which integrates a progressive decoder structure with multi-scale attention mechanisms to significantly improve image generation quality and fault diagnosis accuracy under small-sample conditions. Experiments conducted on two independent planetary gearbox fault datasets validate the proposed method, showing that it substantially reduces the FID score and enhances diagnostic accuracy (by 35% and 20%, respectively). Across multiple evaluation metrics, the MSA-PF-GAN outperforms other state-of-the-art methods. Further analysis demonstrates that the model, through progressive feature fusion and multi-scale attention mechanisms, excels in generating diverse and realistic images while effectively capturing complex fault features. Therefore, this technique shows promising potential and practical value in the field of planetary gearbox fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

高文超,陈一帆,陈诗雨,周思杰,黄俊.应用于齿轮箱故障诊断的小样本图像生成方法[J].电子测量与仪器学报,2025,39(3):246-255

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码