基于权重融合特征重标定网络的运动想象脑电分类
DOI:
CSTR:
作者:
作者单位:

1.桂林航天工业学院电子信息与自动化学院桂林541004;2.桂林电子科技大学电子工程与自动化学院桂林541004

作者简介:

通讯作者:

中图分类号:

TN911.7; TH77

基金项目:

广西自动检测技术与仪器重点实验室基金项目(YQ22209)、广西自动检测技术与仪器重点实验室基金项目(YQ24208)、广西高校中青年教师科研基础能力提升项目(2023KY0813)、桂林电子科技大学研究生教育创新计划(2023YCXS132)项目资助


Weight fusion-based feature recalibration network for motor imagery EEG classification
Author:
Affiliation:

1.School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China; 2.School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    时-频-空特征在运动想象脑电分类中广泛应用,但如何有效利用这些特征提高运动想象分类准确率仍是难点。传统方法通过特征选择剔除冗余信息,但往往忽视了时-频-空特征的组间依赖关系。为此,提出一种基于权重融合特征重标定网络的脑电分类模型。首先,提取时-频-空特征,揭示其分组结构,将每组时-频-空特征作为一个整体,并视为一个特征图。然后,建立两个分支分别获取特征图的通道权重:一个分支通过全局平均池化获取全局信息的通道权重,另一个分支通过全局最大池化获取局部信息的通道权重。接着,设计权重融合操作,将两种通道权重融合,并对特征图进行重缩放,从而实现时-频-空特征的组间依赖关系建模。最后,使用两层全连接层进行分类。在4个公开的运动想象脑电数据集上进行了实验验证,所提出的方法平均分类准确率高达80.72%,优于18种特征选择方法和现有的特征重标定网络方法,以及大多数近期文献的分类结果。实验结果表明,所提方法在实际应用中具有良好的潜力,有望在未来的脑机接口研究和康复训练中得到广泛应用。

    Abstract:

    Time-frequency-spatial features are widely used in motor imagery EEG classification, but effectively utilizing these features to improve classification accuracy remains challenging. Traditional methods often eliminate redundant information through feature selection but tend to overlook the intergroup dependency of time-frequency-spatial features. To address this issue, we propose an EEG classification model based on a feature recalibration network with weight fusion (FRNWF). First, we extract the time-frequency-spatial features to reveal their grouping structure, treating each group of these features as a whole and considering it as a feature map. Two branches are then established to obtain the channel weights of these feature maps: one branch derives the channel weights of global information through global average pooling, while the other derives the channel weights of local information through global maximum pooling. Next, we design a weight fusion operation to merge the two sets of channel weights and rescale the feature maps, thereby achieving intergroup dependency modeling of the time-frequency-spatial features. Finally, two fully connected layers are used for classification. Experimental validation on four publicly available motor imagery EEG datasets shows that the proposed method achieves an average classification accuracy of 80.72%. This outperforms 18 feature selection methods, existing feature recalibration network methods, and most of the recent literature. The experimental results indicate that the proposed method demonstrates significant potential in practical applications and is likely to be widely adopted in future brain computer interface research and motor rehabilitation training.

    参考文献
    相似文献
    引证文献
引用本文

莫云,李易,张本鑫,路仲伟,莫禾胜,李智.基于权重融合特征重标定网络的运动想象脑电分类[J].电子测量与仪器学报,2025,39(1):70-79

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码