基于CNN-GraphSAGE双分支特征融合的齿轮箱故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.重庆邮电大学工业物联网与网络化控制教育部重点实验室重庆400065; 2.重庆交通职业学院智能制造与汽车学院重庆402247

作者简介:

通讯作者:

中图分类号:

TH165.3; TN911.7

基金项目:

国家重点研发计划(2022YFE0114300)、重庆市教委科学技术研究项目(KJQN202100612)资助


Gearbox fault diagnosis method based on CNN-GraphSAGE dual-branch feature fusion
Author:
Affiliation:

1.Ministry of Education Key Laboratory of Industrial Internet of Things and Networked Control,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2. School of Intelligent Manufacturing and Automotive, Chongqing Vocational College of Transportation, Chongqing 402247, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后的小波包特征系数构建包含节点和边的图结构数据;然后,建立CNN-GraphSAGE双分支特征提取网络,在CNN分支中采用空洞卷积网络提取数据的全局特征,在GraphSAGE网络分支中通过多层特征融合策略来挖掘数据结构中隐含的关联信息;最后,基于SKNet注意力机制融合提取的双分支特征,并输入全连接层中实现对齿轮箱的故障诊断。为验证研究方法在齿轮箱故障诊断上的优良性能,首先对所提方法进行消融实验,然后在无添加噪声和添加1 dB噪声的条件下进行对比实验。实验结果表明,即使在1 dB噪声的条件下,研究方法的平均诊断精度为92.07%,均高于其他对比模型,证明了研究方法能够有效地识别齿轮箱的各类故障。

    Abstract:

    Aiming at the problem that the convolutional neural network (CNN) is insufficiently mined on the information of vibration data structure, which leads to the low accuracy of fault diagnosis, a CNN-GraphSAGE dual-branch feature fusion method for gearbox fault diagnosis is proposed. Firstly, the vibration data of the gearbox is subjected to wavelet packet decomposition, and the wavelet packet coefficients are constructed into graph structured data containing nodes and edges. Then a dualbranch feature extraction network is established, with the CNN branch using a dilated convolutional network to extract global features of the data, and the GraphSAGE branch using a multi-layer feature fusion strategy to mine the implicit correlation information in the data structure. Finally, an attention fusion module based on the SKNet attention mechanism is constructed to fuse the dual-branch extracted features, and then the fused features are input into the fully connected layer to realize the fault diagnosis of gearbox. In order to verify the excellent performance of the proposed method in gearbox fault diagnosis, the ablation experiments were conducted first, and then comparative experiments were carried out under the condition of no added noise and adding 1 dB noise. The experimental results show that even under the condition of 1 dB noise, the average diagnostic accuracy of the proposed method is 92.07%, which is higher than the comparison models. The proposed method can effectively recognize various types of faults in gearboxes.

    参考文献
    相似文献
    引证文献
引用本文

韩延,吴迪,黄庆卿,张焱.基于CNN-GraphSAGE双分支特征融合的齿轮箱故障诊断方法[J].电子测量与仪器学报,2025,39(3):115-124

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码